您好,歡迎來到易龍商務網!
【廣告】
發布時間:2021-05-29 06:30  





光伏組件作為光伏發電系統中的核心組成部分,質量問題影響著電站系統效率,其中,熱斑效應和PID效應對光伏組件功率的影響尤其突出,不容忽視。今天小編介紹影響光伏組件功率好壞的兩大效應詳解;

1、熱斑效應
熱斑效應是指在一定條件下,串聯支路中被遮蔽的光伏組件將當做負載,消耗其他被光照的電池組件所產生的能量,被遮擋的光伏電池組件此時將會發熱的現象;異形螺母用于通過橫梁將龍骨固定在瓷磚底座上,六角螺栓用于擰緊調節框架的位置。被遮擋的光伏組件、將會消耗有光照的光伏組件所產生的部分能量或所有能量,降低輸出功率;嚴重將會光伏組件、甚至燒毀組件。
2、熱斑效應產生原因
造成熱斑效應的根源是有個別壞電池的混入、電極焊片虛焊、電池由裂紋演變為破碎、個別電池特性變壞、電池局部受到陰影遮擋等;據美國SunRun發布的一份報告顯示,地方審批流程這一項就使每戶住宅的光伏安裝成本增加2500多美元,降低這類軟性成本也有利于提高太陽能的競爭優勢,而“太陽計劃”的目標之一就是致力于降低軟性成本以降低模塊成本。由于局部陰影的存在,光伏組件中某些電池單片的電流、電壓發生了變化。其結果使電池組件局部電流與電壓之積增大,從而在這些電池組件上產生了局部溫升;
3、防護措施要求
在光伏電池組件的正負極間并聯一個旁路二極管,以增加方陣的可靠性。通常情況下,旁路二極管處于反偏壓,不影響組件正常工作。其原理是當一個電池被遮擋時,其他電池促其反偏成為大電阻,此時二極管導通,總電池中超過被遮電池光生電流的部分被二極管分流,從而避免被遮電池過熱損壞。這其中的關鍵元器件就是電流傳感器,它的精度和線性誤差將直接決定硬性效率,而軟件的采樣頻率也是由硬件的精度來決定。以避免光照組件所產生的能量被受遮蔽的組件所消耗。
2、PID效應
電位誘發衰減效應是電池組件長期在高電壓作用下,使玻璃、封裝材料之間存在漏電流,大量電荷在電池片表面,使得電池表面的鈍化效果惡化,導致組件性能低于設計標準。PID現象嚴重時,會引起一塊光伏組件功率衰減50%以上,從而影響整個組串的功率輸出。光伏發電系統由光伏方陣(光伏方陣由光伏組件串并聯而成)、控制器、蓄電池組、直流/交流逆變器等部分組成。高溫、高濕、高鹽堿的沿海地區易發生PID現象。
3、產生的原因
一是系統設計原因,光伏電站的防雷接地是通過將方陣邊緣的組件邊框接地實現的,這就造成在單個組件和邊框之間形成偏壓,組件所處偏壓越高則發生PID現象越嚴重。對于P型晶硅組件,通過有變壓器的逆變器負極接地,消除組件邊框相對于電池片的正向偏壓會有效的預防PID現象的發生,但逆變器負極接地會增加相應的系統建設成本;二是光伏組件原因,高溫、高濕的外界環境使得電池片和接地邊框之間形成漏電流,封裝材料、背板、玻璃和邊框之間形成了漏電流通道。通過使用改變絕緣膠膜乙烯酯(EVA)是實現組件抗PID的方式之一,在使用不同EVA封裝膠膜條件下,組件的抗PID性能會存在差異。另外,光伏組件中的玻璃主要為鈣鈉玻璃,玻璃對光伏組件的PID現象的影響至今尚不明確;三是電池片原因,電池片方塊電阻的均勻性、減反射層的厚度和折射率等對PID性能都有著不同的影響。太陽能是人類取之不盡用之不竭的可再生能源,具有充分的清潔性、安全性、相對的廣泛性、確實的長壽命和免維護性、資源的充足性及潛在的經濟性等優點,在長期的能源戰略中具有重要地位。
4、有效抑制PID效應的措施
首先是從組件側考慮,采用非Na、Ca玻璃提高玻璃的體電阻,阻斷漏電流通路的形成;2、不再是無頭之蠅中國有句古話“無頭蒼蠅-瞎碰(瞎撞)”,這用來形容2012年左右的分布式市場來說一點不為過,就拿終端用戶來說,即便拿著現金去裝光伏電站,也是無門可尋,因為一路下來,光是各種審批都能拖你幾個月。或者采用非乙烯—共聚物的封裝材料;其次是從逆變器側考慮,采用組件負極接地的方式,防止負偏壓造成的漏電流形成,處置方案簡便、成本低、效果顯著,但負極直接接地會造成安全隱患,威脅電站的正常運行和運維安全。逆變器負極接地后,若發生組件正極接地故障則會造成電池板短路,而運維人員如若接觸到正極則會發生危險,所以負極接地電路必須具有異常電流監測及分斷保護系統,方可在抑制PID效應的同時保障電站設備的運行安全。
現在安裝光伏電站,監控系統成為了現在的標配,有了監控系統,不僅可以隨時隨地了解光伏電站的運行情況,還可從監控參數和運行圖形中,找到系統可能會存在的問題,判斷故障的類型,從而快速解決問題,降低損失。陰暗遮擋是光伏系統常見的一種故障,而動態的陰影遮擋并不是一直都有,要在現場長時間的觀察才能看到,但從監控參數中也可以找到規律。4、應定期消除太陽能電池表面的灰塵,下雪后應該及時將表面的積雪掃除干凈,使其發出更多的電。

1.陰影遮擋會系統的影響
晶硅組件是由60或者72個電池片組成的,一般是20或者24個電池片構成一串,每串都有一個旁路二極管,當組件出現局部遮擋或者損壞時,由發電單元變為耗電單元,產生熱斑效應,電阻值增加,二極管兩端電壓升高而導通,讓其它正常組件所產生的電流通過,系統繼續發電。當P型和N型結合在一起時,接觸面就會形成電勢差,成為太陽能電池。
2.什么是陰影遮擋
由于受到云層,樹木,建筑物以及飛禽排泄物的影響,光伏陣列會受到局部陰影遮擋,這時候光伏組件接收的光照強度會發生改變,逆變器輸出功率降低。
陰影又分為主觀陰影和客觀陰影,主觀陰影又可以分為動態陰影和靜態陰影,客觀陰影指因天氣原因而造成的光照強度減弱,比如云霧、雨雪等天氣,主觀陰影是由附近障礙物阻攔了陽光直射而造成的陰影覆蓋,主觀靜態陰影特指組件表面的覆蓋物,如鳥糞、樹葉、灰塵、積雪等。主觀動態陰影就是廣義的“陰影”,它由光伏系統周邊的高大建筑物,煙窗、樹林、電線桿,或者方陣前后排引起的,形狀隨太陽的移動而變化,一般中午太陽直射時沒有,早晨或者傍晚有。如果是其他方式的發電,中間會經過很多的轉換過程,這樣的過程不僅浪費時間還會大大降低發電效率。
太陽能在現代社會用途越來越廣,那么,太陽光是如何轉化成電能的呢?
太陽能發電的主要原理是根據光生伏打效應,由太陽能組件發出直流電。如果是并網系統則通過并網逆變器直接將電能并入電網;如果是離網系統則通過太陽能控制器給蓄電池及負載充放電。
光生伏打效應
一束光照在半導體上和照在金屬或絕緣體上效果截然不同。由于金屬中自由電子如此之多,以致光引起的導電性能的變化完全可忽略。絕緣體在很高溫度下仍未能激發出更多的電子參加導電。光伏扶貧電站儲能電站不單單需要加裝儲能電池,同時并網逆變器也需要更換成并離逆變器才可使用。而導電性能介于金屬和絕緣體之間的半導體對體內電子的束縛力遠小于絕緣體,可見光的光子能量就可以把它從束縛激發到自由導電狀態,這就是半導體的光電效應。當半導體內局部區域存在電場時,光生載流子將會積累,和沒有電場時有很大區別,電場的兩側由于電荷積累將產生光電電壓,這就是光生伏效應,簡稱光伏效應。
