您好,歡迎來到易龍商務網!
【廣告】
發布時間:2020-11-03 14:33  





空氣預熱器換熱原理
空氣預熱器是布置在尾部煙道上利用排煙余熱將空氣預熱到所需溫度的熱交換器。
當空預器換熱元件經過煙氣側時,煙氣攜帶的一部分熱量就傳遞給換熱元件;而換熱元件經過空氣側時又把熱量傳遞給空氣。這樣空預器回收了煙氣的熱量,降低了排煙溫度,提高了燃料與空氣的初始溫,強化了燃料的燃燒,因而進一步提高了鍋爐效率。
空氣預熱器結構介紹
轉子外殼
轉子外殼封閉轉子并構成空預器的一部分,由低碳鋼板制成。
轉子外殼由六個部分現場組裝而成正八面體,位于兩個端柱之間。端柱兩側的轉子外殼由四套鉸鏈側柱支撐在用戶鋼架上,鉸鏈側柱的布置角考慮到了轉子外殼和鉸鏈側柱能沿空預器中心向外自由、均勻膨脹。
鉸鏈側柱和端柱的設置確保空預器靜態部件在熱態運行時能沿不同方向自由膨脹,以實現空預器安全、經濟的運行。
轉子外殼還支撐著頂部和底部過渡煙風道的外部,過渡煙風道分別與轉子外殼的頂部和底部平板連接。
三分倉軸向密封板直接安裝并支撐在轉子外殼上,與頂、底三分倉扇形板一起將空氣側分隔成一次風和二次風。
煙氣低溫腐蝕
煙氣低溫腐蝕是指當鍋爐的排煙溫度低于煙氣的酸時,在鍋爐的低溫受熱面上會凝結煙氣中的水蒸氣和硫酸蒸氣,凝結的水蒸氣和硫酸蒸氣與傳熱管壁的金屬材質發生化學反應,生成金屬硫酸鹽,導致管壁處腐蝕,隨著反應時間的延長,管壁處發生積灰,積灰導致傳熱管的傳熱性能減弱,受熱面壁溫因此降低。
控制鍋爐煙氣低溫腐蝕從理論上來說就是控制鍋爐低溫受熱面的金屬壁溫要高于煙氣的溫度,煙氣的溫度一般低于 75 ℃。從電廠的實際運行結果看,鍋爐空預器的冷端壁溫只要高于 75 ℃,就能夠避免發生煙氣低溫腐蝕。而在冬季工況和機組低負荷工況的情況下,鍋爐低溫受熱面的金屬壁溫較正常工況下有所下降,需要采取有效的設計措施以防止發生結露現象,才能避免發生低溫腐蝕現象。通常采取的措施是增加暖風器設計,在冬季工況下,通過暖風器換熱將鍋爐進風溫度提高到 20℃;在機組低負荷工況下,也可通過暖風器換熱將鍋爐進風溫度提高到適當溫度。以防止煙氣的低溫腐蝕,同時增加了煙氣余熱利用率。
空氣預熱器腐蝕積灰問題探討
目前國內形勢下,對燃煤電站的環保排放要求越來越嚴格,為了達到氮氧化物的排放標準,燃煤電站大量采用在煙道中噴入液氨或尿素等還原劑的方式以降低氮氧化物的排放量,在此過程中氨氣發生揮發而后隨著煙氣的排放而排放,造成氨逃逸現象。煙氣經過 SCR 裝置時,部分 SO2在催化劑的作用下發生氧化反應生成 SO3,SO3與逃逸的 NH3及水蒸氣發生化學反應生成 NH4HSO4和(NH4)2SO4。其中較多地生成 NH4HSO4,而(NH4)2SO4產生量很少,且為粉末狀,處于積灰中,對空氣預熱器幾乎無影響。而 NH4HSO4的沸點為 350 ℃,熔點為147 ℃ , 空 預 器 的 冷 端 溫 度 較 低 , 溫 度 區 間 處 于NH4HSO4熔點溫度范圍內,此時NH4HSO4的黏性很大,容易黏附煙氣中帶入的飛灰顆粒,將其吸附在空預器的冷端管壁上,造成管壁的腐蝕和積灰,增加了空預器阻力的同時降低了空預器的傳熱能力。不同煤種中硫元素含量的不同對空預器腐蝕的影響程度也不同,含硫量越高的煤種其煙氣中 SO3的濃度越大,生成的NH4HSO4越多,空預器的腐蝕積灰越嚴重。