<em id="b06jl"></em>
      <tfoot id="b06jl"></tfoot>
      <tt id="b06jl"></tt>

        1. <style id="b06jl"></style>

              狠狠干奇米,国产igao,亚卅AV,污污内射在线观看一区二区少妇,丝袜美腿亚洲综合,日日撸日日干,91色鬼,夜夜国自一区
              您好,歡迎來到易龍商務網!
              全國咨詢熱線:15312188028

              沈北新區視覺影像檢測市場滿意的選擇「邁迅威視覺」

              【廣告】

              發布時間:2021-03-22 22:11  









              在現代包裝工業自動化生產中,涉及各種各樣的檢查、測量,比如飲料瓶蓋的印刷質量檢查,產品包裝上的條碼和字符識別等。這類應用的共同特點是連續大批量生產、對外觀質量的要求非常高。通常這種帶有高度重復性的工作只能靠人工檢測來完成,我們經常在一些工廠的現代化流水線后面看到數以百計甚至逾千的檢測工人來執行這道工序,在給工廠增加巨大的人工成本和管理成本的同時,仍然不能保證100%的檢驗合格率(即“零缺陷”)。

               


              為了實現外觀缺陷自動檢測,研究了基于機器視覺技術的外觀缺陷檢測系統。首先針對外觀缺陷圖像特點,分析了采用灰度閾值及單一顏色模型分割缺陷的局限性,提出基于混合顏色模型的缺陷圖像分割方法,實現了外觀缺陷快速、準確分割;然后通過分析外觀缺陷特點,分別從形狀、顏色和紋理共選取了12個類別差異明顯的特征參數,提取了外觀缺陷特征;后選擇BP神經網絡作為缺陷分類器,根據經驗和實驗確定了神經網絡結構及參數,并分析了傳統BP算法在外觀缺陷分類應用中的不足,通過改變收斂標準、自適應調整步長和引入動量項以優化BP算法,改善了神經網絡分類效果。



              在當今這個時代,計算機視覺領域呈現出很多新的趨勢,其中顯著的一個,就是應用的性增長。除了手機、個人電腦和工業檢測之外,計算機視覺技術在智能安防、機器人、自動駕駛、智慧醫、無人機、增強現實(AR)等領域都出現了各種形態的應用方式。計算機視覺迎來了一個應用性增長的時代,目前的應用如下圖所示,主要以運動控制為主。隨著各個領域技術不斷發展,許多科技巨頭也開始了在圖像識別和人工智能領域的布局,Facebook簽下的人工智能Yann LeCun重大的成就就是在圖像識別領域,其提出的LeNet為代表的卷積神經網絡,在應用到各種不同的圖像識別任務時都取得了不錯效果,被認為是通用圖像識別系統的代表之一;Google 借助模擬神經網絡“DistBelief”通過對數百萬份YouTube 視頻的學習自行掌握了貓的關鍵特征,這是機器在沒有人幫助的情況下自己讀懂了貓的概念。這也能看出國技公司對圖像識別技術以及人工智能技術的重視程度。



              行業推薦