您好,歡迎來到易龍商務網!
【廣告】
發布時間:2021-09-26 18:51  





人工智能控制器
決策機TMAI模型可以處理大量實時性數據,從數據中挖掘系統能耗潛力,給出超出傳統經驗的控制模式,可進一步精細調控,即使到了深寒期,依然實現節能運行。1、以“室”為終:以室溫為控制目標,穩定室溫,平抑波動;快速調整、穩定室溫,回到供熱的初衷:滿足用戶的室溫舒適。即使到了深寒期,依然實現節能運行。
在各種出版物中,介紹了許多被模糊化的控制器,但這應與“充分模糊”控制器完全區分開來,“充分模糊”控制器才是完全意義上的模糊控制器,被模糊化的控制器易于實現,往往通過改造現有古典控制器得以實現,如被模糊化的PI控制器(FPIC)使用模糊邏輯改變控制器的比例、積分參數,從而使系統的性能得到提高
也有一些的文章論述運用模糊邏輯控制感應電機的磁通和力矩。它的輸入標定因子是變化的。實驗結果也驗證了所提方案的有效性。該系統中模糊速度控制器與常規的PI速度控制器和CRPWM塑變器一起使用,它往往用來補償可能的慣性和負載轉矩的擾動。神經網絡的應用 現如今,有大量文章討論神經網絡在交流電機和驅動系統的條件監測和診斷中的運用。
使用常規反向轉波算法的ANN用于步進電機控制算法的優化。該方案使用實驗數據,根據負載轉矩和初始速度來確定大可觀測速度增量。這就需要ANN學習三維圖形映射。該系統與常規控制算法(梯形控制法)相比具有更好的性能,并且大大減少了定位時間,對負載轉矩的大范圍變化和非初始速度也有滿意的控制效果。