您好,歡迎來到易龍商務網!
【廣告】
發布時間:2021-01-05 18:48  





中考數學解題實用方法
換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
判別式法與韋達定理
一元二次方程ax2 bx c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
梳理考點掌握知識體系
在沖刺復習時,首先要靜下心來,針對這門學科成績落后,要加強基礎知識薄弱部分的梳理,“重課本、理考點”,查漏補缺,將易混淆的概念、規律加強對比、區分,配以適當的練習進行鞏固。對《中考說明》中所列考點重視理解分析,要逐點掃描,逐個過關,掃除復習中的一些盲點,忌呆板機械記憶。中考語文知識記憶口訣助記法詩歌比散文容易背誦,口訣比一般條文容易記住。其次要關注熱點。考生要分析每年中考命題的必考點,這些必考點也就是中考命題的熱點,要注意解決拉分點。對于相當比例的中等生,要想通過沖刺復習有長足的進步,僅僅做好基礎題是不夠的,還要適當的關注一些拉分點。對于中考中的拉分點一般不是很集中,比如化學的拉分題主要集中在選擇題的后一、二題和實驗探究題上,而數學的拉分點在幾何與圓或者函數結合的綜合題,建議適當選擇一些拉分題進行針對性復習,做到有備無患。
中考在即,通過兩年的初中物理學習,同學們已經了解了物理的初步方法和知識,后的成績與平時的努力、積累、以及良好的習慣是分不開的。(2)填空和簡答題:填空題并不需要書寫思考過程和計算過程,所以在草稿紙上的思路規范過程顯得尤為重要,一定要“寫”,不能只是“想”,有些同學懶得動手,總希望想一下就能得出答案,這些同學要記住“天上不會掉餡餅,如果天上掉餡餅,地下一定有陷阱。每年都有一些同學平時成績較好,但是關鍵時刻卻沒能發揮出應有的水平,而又有另外一些同學卻成為“黑馬”,這當然與平時學習過程以及方法有關系,但是有一點是不容忽視的,那就是,在中考當中,在實力近似相同的情況下,誰能夠采取更加有效的應試策略與技巧,誰就更有把握拔得頭籌。
歸類記憶法就是根據識記材料的性質、特征及其內在聯系,進行歸納分類,以便幫助學生記憶大量的知識。比如,學完計量單位后,可以把學過的所有內容歸納為五類:長度單位;面積單位;體積和容積單位;重量單位;時間單位。比如化學用語書寫的規范性,物理、數學書寫公式、代入數據、解出結果、統一單位要步步落實,不能只寫公式,不代入必要的數據,直接寫出答案。這樣歸類,能夠把紛紜復雜的事物系統化、條理化,易于記憶,盡量將所學的理論知識和思維方法應用于實踐。