步進電機的細分驅動控制步進電機由于受到自身制造工藝的限制,如步距角的大小由轉子齒數和運行拍數決定,但轉子齒數和運行拍數是有限的,因此步進電機的步距角一般較大并且是固定的,步進的分辨率低、缺乏靈活性、在低頻運行時振動,噪音比其他微電機都高,使物理裝置容易疲勞或損壞。這些缺點使步進電機只能應用在一些要求較低的場合,對要求較高的場合,只能采取閉環控制,增加了系統的復雜性,這些缺點嚴重限制了步進電機作為優良的開環控制組件的有效利用。神經網絡控制神經網絡是利用大量的神經元按一定的拓撲結構和學習調整的方法。細分驅動技術在一定程度上有效地克服了這些缺點。動態指標術語1、步距角精度:步進電機每轉過一個步距角的實際值與理論值的誤差。用百分比表示:誤差/步距角*100%。不同運行拍數其值不同,四拍運行時應在5%之內,步進電機(圖6)八拍運行時應在15%以內。步進電機是一種感應電機,它的工作原理是利用電子電路,將直流電變成分時供電的,多相時序控制電流,用這種電流為步進電機供電,步進電機才能正常工作,驅動器就是為步進電機分時供電的,多相時序控制器。2、失步:電機運轉時運轉的步數,不等于理論上的步數。稱之為失步。3、失調角:轉子齒軸線偏移定子齒軸線的角度,電機運轉必存在失調角,由失調角產生的誤差,采用細分驅動是不能解決的。

推導出了二相混合式步進電機 d-q 軸數學模型 ,以轉子永磁磁鏈為定向坐標系 ,令直軸電流 id =0 ,電動機電磁轉矩與 i q 成正比 , 用PC 機實現了矢量控制系統 。系統中使用傳感器檢測電機的繞組電流和轉自位置 ,用 PWM 方式控制電機繞組電流 。驅動要求編輯1、能夠提供較快的電流上升和下降速度,步進電機(圖12)使電流波形盡量接近矩形。文獻推導出基于磁網絡的二相混合式步進電機模型 , 給出了其矢量控制位置伺服系統的結構 ,采用神經網絡模型參考自適應控制策略對系統中的不確定因素進行實時補償 ,通過1大轉矩/電流矢量控制實現電機的控制 。