您好,歡迎來到易龍商務網!
【廣告】
發布時間:2020-08-24 13:33  





直燃式焚燒爐的設計是依廢氣風量,VOCs濃度及所需知破壞去除效率而定。操作時含VOCs的廢氣用系統風機導入系統內的換熱器,廢氣經由換熱器管側而被加熱后,再通過燃燒器,這時廢氣已被加熱至催化分解溫度(650~1000℃),并且有足夠的留置時間(0.5~2.0秒)。這時會發生熱反應,而VOCs被分解為二氧化碳及水氣。之后此一熱且經凈化氣體進入換熱器之殼側將管側(tubeside)未經處理的VOC廢氣加熱,此換熱器會減少能源的消耗(甚至于某適當的VOCs濃度以上時便不需額外的燃料),后,凈化后的氣體從煙囪排到大氣中。
濃縮轉輪/焚燒爐系統吸附大風量低濃度揮發性有機化合物(VOCs)。再把脫附后小風量高濃度廢氣導入焚燒爐予以分解凈化。大風量低濃度的VOCs廢氣,通過一個由沸石為吸附材料的轉輪,VOCs經被轉輪吸附區的沸石所吸附后凈化的氣體經煙囪排到大氣,再于脫附區中用180℃~200℃的小量熱空氣,將VOCs予以脫附。如此一高濃度小風量的脫附廢氣在導入焚燒爐中予以分解為二氧化及水氣,凈化的氣體經煙囪排到大氣。

三床式RTO原理:
階段一:廢氣通過蓄熱床A被預熱,然后進入燃燒室燃燒,蓄熱床C中殘留未處理廢氣被凈化后的氣體反吹回燃燒室進行焚燒處理(吹掃功能),分解后的廢氣經過蓄熱床B排出,同時蓄熱床B被加熱。
階段二:廢氣通過蓄熱床B被預熱,然后進入燃燒室燃燒,蓄熱床A中殘留未處理廢氣被凈化后的氣體反吹回燃燒室進行焚燒處理,分解后廢氣經過蓄熱床C排出,同時蓄熱床C被加熱。
階段三:廢氣通過蓄熱床C被預熱,然后進人燃燒室燃燒,蓄熱床B中殘留未處理廢氣被凈化后的氣體反吹回燃燒室進行焚燒處理分解后廢氣經過蓄熱床A排出,同時蓄熱床A被加熱。
如此周期性運行,廢氣在燃燒室內氧化分解,燃燒室內溫度維持在設定溫度(一般為800-850攝氏度)。當RTO進氣口的廢氣濃度達到一定值時,VOCs氧化釋放的熱量能夠維持RTO蓄熱和放熱的能量儲備,則此時RTO不需要使用燃料就能夠維持燃燒室內的溫度。
大量工程應用表明:三床式RTO的VOCs的分解效率可達99%,綜合熱效率可達95%,進出口溫差在40攝氏度左右,在閥切換時,廢氣管道內的壓力波動在±250pa。三床式RTO的VOCs處理濃度不能超過5g/m3,不然會超過某些地方(例如北京、上海等)排放標準。另外由于其比表面積較大所以自身運行散熱量較大,降低了可供回用的余熱量。
RTO工作原理
蓄熱式熱力氧化器(RTO)作為內部填充蓄熱材料的換熱器,冷熱氣體周期替通過蓄熱體進行換熱。高溫氣體通過蓄熱體時使其溫度升高,將熱量暫時貯存起來,然后低溫氣體通過同一蓄熱體,將貯存的熱量帶走。隨著蓄熱材料的發展,目前RTO的熱回收率已達到95%以上,同時占用空間越來越小。RTO輔助燃燒的燃料消耗很少,當有機廢氣達到一定濃度時,還可以從RTO中輸出熱量,所以RTO在有機廢氣處理中得到普遍應用。的陶瓷蓄熱體為MLM-180,該陶瓷蓄熱體具有傳統蜂窩陶瓷比表面積大、熱容高、傳熱快、壓降低、抗污堵的優點,在歐美等發達國家的化工和環保行業得到廣泛應用。由于RTO的蓄熱材料選用陶瓷填料,因此可用來處理腐蝕性或含有顆粒物的有機廢氣,有機廢氣與O2發生氧化反應,生成CO2和H2O。這種氧化反應類似于化學上的燃燒過程,但由于有機廢氣的濃度很低,反應中不產生可見的火焰。通過RTO裝置使有機廢氣與O2發生氧化反應可實現焦化廢氣的達標排放。
蓄熱式焚燒系統(RTO)是利用陶瓷蓄熱體來儲存有機廢氣分解時產生的熱量,并用陶瓷蓄熱體儲存的熱能來預熱和分解未被處理的有機廢氣,從而達到很高的熱效率,氧化溫度一般在 800℃ 到 850℃ 之間,達1100℃。 蓄熱式焚燒系統主要用于有機廢氣濃度較低而廢氣量較大的場合,在有機廢氣中含有腐蝕性、對催化劑有毒的物質和需要較高溫度氧化某些臭氣時也非常適用。