您好,歡迎來到易龍商務網!
【廣告】
發布時間:2020-07-29 17:05  





對換熱器進行不同工況分析,研究不同工況下換熱器的換熱性能。并編寫換熱器的沸騰用戶自定義(模型,將模型導入軟件。分析換熱器出現沸騰工況下內部蒸汽的流動情況,并根據對模擬結果的研究提出對換熱器的改進措施。管殼式換熱器作為重要的換熱設備,在石油化工生產領域廣泛應用,其換熱性能對這些領域的工藝流程影響較大。通過對模擬結果的分析可知,研究的自然循環換熱器能及時有效排出堆芯余熱,雖然模擬值和設計值之間有一定誤差,但是誤差很小不影響對換熱器模擬結果的分析。換熱器的復雜結構使換熱器局部產生了“傳熱死區”和“流動死區”,這些死區的存在影響了換熱器內自然循環的形成。當換熱器傳熱進行一段時間后換熱器內的殼側溫度會達到飽和出現沸騰,沸騰產生的大量蒸汽在換熱器的“尖角”處聚,會對換熱器內流體的傳熱和流動特性產生影響。
但是由于換熱器大多體積龐大,內部結構復雜,模型的網格處理比較復雜,且對計算機的配置要求高,前人的研究分為兩種,首先是利用多孔介質模型,或者模擬換熱器理想模型。數值模擬與實驗方法相比具有如下優點:模擬能力強。計算機模擬技術既能模擬真實條件,又能模擬某些理想化的假定,拓寬了實驗研宄的范圍,便于分析各種情況下換熱器的運行特性,并減少了實驗的工作量。數據完整。以實驗裝置中的3處壁溫、污管的出入口溫度、污管中流體的流速和污管熱阻為輸入,建立基于徑向基神經網絡的污垢預測模型,對篩選出的160組數據進行預測,與BP網絡相比,該網絡預測污垢熱阻的收斂速度和精度都優于BP網絡。數值計算可以得出換熱器內部的流場、溫度場及壓力等參數的分布,據此,可以詳細分析換熱器內管束結構等布置的合理性、換熱器的換熱情況、換熱性能等。經濟性好。利用計算機軟件數值計算的費用遠遠低于實驗研究的費用。周期短。數值模擬所用的時間相對于實驗要少,方便從各種參數的匹配組合中快速選擇的方案。
用TS模型和多模型組合預測冷凝器污垢。以實驗裝置中的3處壁溫、污管的出入口溫度、污管中流體的流速和污管熱阻為輸入,建立基于徑向基神經網絡的污垢預測模型,對篩選出的160組數據進行預測,與BP網絡相比,該網絡預測污垢熱阻的收斂速度和精度都優于BP網絡。采用單相水為工質,對扁管殼式換熱器進行了大量的實驗研究,分析管程流量,殼程流量等因素對其傳熱和阻力性能的影響。早在上世紀六十年代就有學者首先提出污垢熱阻隨時間的變化是沉積率與剝蝕率之差這一結垢模型,將污垢熱阻隨時間的變化關系歸納為線性污垢模型、冪律污垢模型、降律污垢模型、漸近污垢增長模型,而且己有基于上述方法制成的儀器儀表,對污垢清洗具有重要的指導作用。但是,管殼式換熱器結垢對其內部流動換熱性能影響的研究相對較少。
單弓形折流板管殼式換熱器物理模型復雜,因此選用適應性強的正四面體和金字塔形非結構化網格,使用GAMBIT劃分網格。網格的數量直接決定了計算速度和精度。網格過少,將不到流場的流動特性;網格過多,一方面會嚴重消耗計算機資源,另一方面大量的數值耗散積累會影響計算結果的正確性。而當量均拒只為分析結坂對換熱器傳熱性能的影響,本課題忽略結坂對換熱器內部流場的影響,只考慮結塘對換熱面傳熱性能的影響。所以進行網格的獨立性驗證時十分必要的。以一個單弓形折流板管殼式換熱器模型為例進行網格獨立性驗證。共三套網格:換熱器整體均為四面體,終網格數量為1,521,014個;殼程為四面體網格,管程及殼程進出口管為六面體網格,終網格數量為I ,952,621個;由面到體依次畫網格,終網格數量為2,175,849個。后面兩套網格計算結果相差小于60%綜合考慮計算精度與計算花費,選取第二套網格:終網格數量為1,952,621個。