您好,歡迎來到易龍商務網!
【廣告】
發布時間:2020-11-03 11:50  






車刀的蕞佳角度
一、車刀切削部分的組成
車刀切削部分由前刀面、主后刀面、副后刀面、主切削刃、副切削刃和刀尖組成。▲ 三面二刃一刀尖
1)前刀面 刀具上切屑流過的外表。
2)主后刀面 刀具上與工件上的加工外表相對著而且彼此作用的外表,稱為主后刀面。
3)副后刀面 刀具上與工件上的已加工外表相對著而且彼此作用的外表,稱為副后刀面。
4)主切削刃 刀具的前刀面與主后刀面的交線稱為主切削刃。
5)副切削刃 刀具的前刀面與副后刀面的交線稱為副切削刃。
6)刀尖 主切削刃與副切削刃的交點稱為刀尖。刀尖實踐是一小段曲線或直線,稱修圓刀尖和倒角刀尖。
二、測量車刀切削角度的輔佐平面
為了確定和測量車刀的幾許角度,需求選取三個輔佐平面作為基準,這三個輔佐平面是切削平面、基面和正交平面。
1)切削平面——切于主切削刃某一選定點并筆直于刀桿底平面的平面。
2)基面——過主切削刃的某一選定點并平行于刀桿底面的平面。
3)正交平面——筆直于切削平面又筆直于基面的平面。
可見這三個坐標平面彼此筆直,構成一個空間直角坐標系。
三、車刀的主要幾許角度及挑選
3.1前角(γ0 )挑選的準則
前角的巨細主要解決刀頭的鞏固性與鋒利性的矛盾。因而首要要根據加工資料的硬度來挑選前角。加工資料的硬度高,前角取小值,反之取大值。其次要根據加工性質來考慮前角的巨細,粗加工時前角要取小值,精加工時前角應取大值。前角一般在-5°~25°之間選取。
一般,制造車刀時并沒有預先制出前角(γ0),而是靠在車刀上刃磨出排屑槽來取得前角的。排屑槽也叫斷屑槽,它的作用大了去了折斷切屑,不發生纏繞; 操控切屑的流出方向,保持已加工外表的精度;降低切削抗力,延常刀具壽命。
3.2 后角(α0 )挑選的準則
首要考慮加工性質。精加工時,后角取大值,粗加工時,后角取小值。其次考慮加工資料的硬度,加工資料硬度高,主后角取小值,以增強刀頭的鞏固性;反之,后角應取小值。后角不能為零度或負值,一般在6°~12°之間選取。
3.3 主偏角(Kr )的選用準則
首要考慮車床、夾具和刀具組成的車削 工藝系統的剛性,如系統剛性好,主偏角應取小值,這樣有利于進步車刀使用壽命、改進散熱條件及外表粗造度。其次要考慮加工工件的幾許形狀,當加工臺階時,主偏角應取90°,加工中心切入的工件,主偏角一般取60°。主偏角一般在30°~90°之間,常用的是45°、75 °、90°。
3.4 副偏角(Kr′)的挑選準則
首要考慮車刀、工件和夾具有滿足的剛性,才能減小副偏角;反之,應取大值;其次,考慮加工性質,精加工時,副偏角可取10°~15°,粗加工時,副偏角可取5°左右。
3.5 刃傾角(λS)的挑選準則
主要看加工性質,粗加工時,工件對車刀沖擊大, 取λS ≤ 0°,精加工時,工件對車刀沖擊力小, 取λS≥0°;一般取λS=0°。刃傾角一般在-10°~5°之間選取。
圓柱齒輪加工工藝進程常因齒輪的結構形狀、精度等級、出產批量及出產條件不同而選用不同的工藝計劃。下面列出兩個精度要求不同的齒輪典型工藝進程供剖析比較。
一、普通精度齒輪加工工藝剖析
(一)工藝進程剖析
圖9-17所示為一雙聯齒輪,資料為40Cr,精度為7-6-6級,其加工工藝進程見表9-6。
從表中可見,齒輪加工工藝進程大致要通過如下幾個階段:毛坯熱處理、齒坯加工、齒形加工、齒端加工、齒面熱處理、精基準批改及齒形精加工等。
粗車外圓及端面,留余量1.5~2mm,鉆鏜花鍵底孔至尺度φ30H12
拉花鍵孔
鉗工去毛刺
上芯軸,精車外圓,端面及槽至要求
查驗
滾齒(z=42),留剃余量0.07~0.10 mm
插齒(z=28),留剃余量0.0,4~0.06 mm
倒角(Ⅰ、Ⅱ齒12°牙角)
剃齒(z=42),公法線長度至尺度上限
剃齒(z=28),選用螺旋視點為5°的剃齒刀,剃齒后公法線長度至尺度上限
齒部高頻淬火:G52
推孔
珩齒
總檢入庫
外圓及端面
φ30H12孔及A面
花鍵孔及A面
花鍵孔及B面
花鍵孔及端面
加工的地一階段是齒坯初進入機械加工的階段。因為齒輪的傳動精度主要決定于齒形精度和齒距散布均勻性,而這與切齒時選用的定位基準(孔和端面)的精度有著直接的聯系,所以,這個階段主要是為下一階段加工齒形準備精基準,使齒的內孔和端面的精度根本到達規則的技術要求。在這個階段中除了加工出基準外,關于齒形以外的次要表面的加工,也應盡量在這一階段的后期加以完成。
第二階段是齒形的加工。關于不需要淬火的齒輪,一般來說這個階段也就是齒輪的終加工階段,通過這個階段就應當加工出完全契合圖樣要求的齒輪來。關于需要淬硬的齒輪,有必要在這個階段中加工出能滿意齒形的終精加工所要求的齒形精度,所以這個階段的加工是確保齒輪加工精度的要害階段。應予以特別注意。
加工的第三階段是熱處理階段。在這個階段中主要對齒面的淬火處理,使齒面到達規則的硬度要求。
加工的終階段是齒形的精加工階段。這個階段的意圖,在于批改齒輪通過淬火后所引起的齒形變形,進一步進步齒形精度和降低表面粗糙度,使之到達終的精度要求。在這個階段中首先應對定位基準面(孔和端面)進行修整,因淬火以后齒輪的內孔和端面均會發生變形,如果在淬火后直接選用這樣的孔和端面作為基準進行齒形精加工,是很難到達齒輪精度的要求的。以修整過的基準面定位進行齒形精加工,可以使定位經確可靠,余量散布也比較均勻,以便到達精加工的意圖。
(二)定位基準的斷定
定位基準的精度對齒形加工精度有直接的影響。軸類齒輪的齒形加工一般挑選鼎尖孔定位,某些大模數的軸類齒輪多挑選齒輪軸頸和一端面定位。盤套類齒輪的齒形加工常選用兩種定位基準。
1)內孔和端面定位 挑選既是規劃基準又是丈量和安裝基準的內孔作為定位基準,既契合“基準重合”原則,又能使齒形加工等工序基準一致,只要嚴格操控內孔精度,在專用芯軸上定位時不需要找正。故出產率高,廣泛用于成批出產中。
2)外圓和端面定位 齒坯內孔在通用芯軸上安裝,用找正外圓來決定孔中心方位,故要求齒坯外圓對內孔的徑向跳動要小。因找正功率低,一般用于單件小批出產。
(三)齒端加工
如圖9-18所示,齒輪的齒端加工有倒圓、倒尖、倒棱,和去毛刺等。倒圓、倒尖后的齒輪,沿軸向滑動時容易進入嚙合。倒棱可去除齒端的銳邊,這些銳邊經滲碳淬火后很脆,在齒輪傳動中易崩裂。
用銑刀進行齒端倒圓,如圖9-19所示。倒圓時,銑刀在高速旋轉的一起沿圓弧作往復搖擺(每加工一齒往復搖擺一次)。加工完一個齒后工件沿徑向退出,分度后再送進加工下一個齒端。
齒端加工有必要安排在齒輪淬火之前,通常多在滾(插)齒之后。
(四)精基準批改
齒輪淬火后基準孔發生變形,為確保齒形精加工質量,對基準孔有必要給予批改。
對外徑定心的花鍵孔齒輪,通常用花鍵推刀批改。推孔時要避免歪斜,有的工廠選用加長推刀前引導來避免歪斜,已獲得較好作用。
對圓柱孔齒輪的批改,可選用推孔或磨孔,推孔出產率高,常用于未淬硬齒輪;磨孔精度高,但出產率低,關于整體淬火后內孔變形大硬度高的齒輪,或內孔較大、厚度較薄的齒輪,則以磨孔為宜。
磨孔時一般以齒輪分度圓定心,如圖9-20所示,這樣可使磨孔后的齒圈徑向跳動較小,對以后磨齒或珩齒有利。為進步出產率,有的工廠以金剛鏜替代磨孔也獲得了較好的作用。
二、齒輪加工工藝特色(二)齒輪加工工藝特色
(1)定位基準的精度要求較高
由圖9-21可見,作為定位基準的內孔其尺度精度標示為φ85H5,基準端面的粗糙度較細,為Ra1.6μm,它對基準孔的跳動為0.014mm,這幾項均比一般精度的齒輪要求為高,因此,在齒坯加工中,除了要注意操控端面與內孔的筆直度外,需要留必定的余量進行精加工。精加工孔和端面選用磨削,先以齒輪分度圓和端面作為定位基準磨孔,再以孔為定位基準磨端面,操控端面跳動要求,以確保齒形精加工用的精基準的經確度。 (2)齒形精度要求高 圖上標示6-5-5級。為滿意齒形精度要求,其加工計劃應挑選磨齒計劃,即滾(插)齒-齒端加工-高頻淬火-批改基準-磨齒。磨齒精度可達4級,但出產率低。本例齒面熱處理選用高頻淬火,變形較小,故留磨余量可縮小到0.1 mm左右,以進步磨齒功率。
硬質合金刀具跟著數控機床和加工中心等設備運用日漸遍及,在航空航天、汽車、高速列車、風電、電子、能源、模具等裝備制造業的開展推進下,切削加工已邁入了一個以高速、和環保為標志的高速加工開展的新時期—現代切削技能階段。
高速切削、干切削和硬切削作為當前切削技能的重要開展趨向,其重要地位和人物日益凸顯。對這些先進切削技能的運用,不僅令加工功率成倍進步,亦著實推進了產品開發和工藝立異的進程。例如,精細模具硬質資料的型腔,選用高轉速、小進給量和小吃深加工,既可取得很高的表面質量,又能夠省卻磨削、EDM和手藝拋光或削減相應工序的時間,然后縮短生產工藝流程,進步生產率。
曩昔一些企業制造復雜模具時,基本上都需要3~4個月才能交付運用,而現在選用高速切削加工後,半個月便可完成。據調查,一般的工模具,有60%的機加工量可用高速加工工藝來完成。
高速加工時,不光要求硬質合金刀具可靠性高、切削性能好、能穩定地斷屑和卷屑、還要能達成,并能完成快換或自動替換等。因此,對硬質合金刀具材資料、刀具結構、以及刀具的裝夾都提出了更高要求。
對硬質合金刀具資料的要求:
高速加工對硬質合金刀具杰出的要求是,既要有高的硬度和高溫硬度,又要有足夠的斷裂耐性。為此,須選用細晶粒硬質合金、涂層硬質合金、陶瓷、聚晶金剛石(PCD)和聚晶立方氮化硼(PCBN)等刀具資料—它們各有特點,適應的工件資料和切削速度范圍也都不同。例如,高速加工鋁、鎂、銅等有色金屬件,首要選用PCD和CVD金剛石膜涂層刀具。高速加工鑄件、淬硬鋼(50~67HRC)和冷硬鑄鐵首要用淘瓷刀具和PCBN刀具。
1.硬質合金刀具材已邁入細晶粒超細晶粒階段
涂層硬質合金刀具(如TiN、TiC、TiCN、TiAlN等)雖其加工工件資料范圍廣,但抗癢化溫度一般不高,所以通常只宜在400-500m/min的切削速度范圍內加工鋼鐵件。對於Inconel718高溫鎳基合金可運用陶瓷和PCBN刀具。據報道,加拿大學者用SiC晶須增韌陶瓷銑削Inconel718合金,推薦蕞佳的切削條件為:切削速度700m/min,吃深為1-2mm,每齒進給量為0.1-0.18mm/z。
目前,硬質合金已進入細晶粒(1-0.5μm)和超細晶粒(<0.5μm)的開展階段,曩昔細晶粒多用於K類(WC Co)硬質合金,近幾年來P類(WC TiC Co)和M類(WC TiC TaC或NbC Co)硬質合金也向晶粒細化方向開展。
以往,為進步硬質合金的耐性,通常是添加鈷(Co)的含量,由此帶來的硬度下降如今可以經過細化晶粒得到補償,并使硬質合金的抗彎強度進步到4.3GPa,已達到并超越普通高速鋼(HSS)的抗彎強度,改變了人們普遍認為P類硬質合金適於切鋼、而K類硬質合金只適於加工鑄鐵和鋁等有色金屬的選材格式。
選用WC基的超細晶粒K類硬質合金,相同可加工各種鋼料。細晶粒硬質合金的另一個優點是硬質合金刀具刃口尖利,特別適於高速切削粘而韌的工件資料。以日本不二越公司開發的AQUA麻花鉆為例,其用細晶粒硬質合金制造,并涂覆耐熱、耐沖突的潤滑涂層,在高速濕式加工結構鋼和合金鋼(SCM)時,切削速度200m/min,進給速度1600mm/min,加工功率進步了2.5倍,刀具壽數進步2倍;干式鉆孔時,切削速度150m/min,進給速度1200mm/min。
2.涂層提升到開發厚膜、復合和多元涂層的新階段
現如今,涂層已進入到開發厚膜、復合和多元涂層的新階段,新開發的TiCN、TiAlN多元超薄、超多層涂層(有的超薄膜涂層數可多達2000層,每層厚約1nm)與TiC、TiN、Al2O3等涂層的復合,加上新式抗塑性變形的基體,在改進涂層的耐性、涂層與基體的結合強度、進步涂層的耐磨性方面有了重大進展,進步了硬質合金刀具材的性能。
硬質合金材涂層刀具已成為現代切削硬質合金刀具的標志,在刀具中的運用份額達到60%。涂層硬質合金刀具的產品現已出現品牌化、多樣化和通用化的趨向。例如,德國施耐爾(Schnell)公司用納米技能推出的一種超長壽數LL涂層立銑刀,用其加工零件硬度超越70HRC淬硬模具鋼材時,硬質合金刀具材壽數可延長2-3倍。
特別值得強調的是,近幾年開展起來的在硬質合金表面涂覆金剛石的技能,使硬質合金刀具不僅在黑色金屬范疇,并且在有色金屬范疇中的切削功率取得了進步。由此可知,硬質合金今後仍將是制造高速加工刀具的首要基體資料。
一、前言
機械加工是指通過一種機械設備對工件的外形尺寸或性能進行改動的過程。按加工方式上的不同可分為切削加工和壓力加工。
二、機械加工基本常識
以下這些機械加工常識的匯總:
對切削溫度的影響:切削速度,進給率,背吃刀量;
對切削力的影響:背吃刀量,進給率,切削速度;
對刀具耐用度的影響:切削速度,進給率,背吃刀量。
當背吃刀量增大一倍時,切削力增大一倍;
當進給率增大一倍時,切削力大約增大70%;
當切削速度增大一倍時,切削力逐步減小;
可以依據鐵屑排出的情況判斷出切削力,切削溫度是否在正常范圍內。
當所量的實踐數值X與圖紙直徑Y之大于0.8時車的凹圓弧時,副偏角52度的車刀(也就是我們常用的刀片為35度的主偏角93度的車刀)所車出的R在起點位置的當地可能會擦刀。
鐵屑顏色所代表的溫度:
白色小于200度
黃色220-240度
暗藍290度
藍320-350度
紫黑大于500度
手動刀尖R補償公式:
從下往上車倒角:Z=R*(1-tan(a/2))X=R(1-tan(a/2))*tan(a)從上往下車倒角將減改成加即可。
三、在數控車加工時,以下幾點應特別注意:
(1)關于目前我國的經濟數控車床一般選用的是一般三相異步電機通過變頻器完結無級變速,假如沒有機械減速,往往在低速時主軸輸出扭矩不足,假如切削負荷過大,簡單悶車,不過有的機床上帶有齒輪檔位很好的處理了這一問題;
(2)盡可能使刀具能完結一個零件或一個作業班次的加作業業,大件精加工特別要注意中心避免半途換刀確保刀具能一次加工完結;
(3)用數控車車削螺紋時因盡可能選用較高的速度,以完結,出產;
(4)盡可能運用G96;
(5)高速度加工的基本概念就是使進給超過熱傳導速度,從而將切削熱隨鐵屑排出使切削熱與工件阻隔,確保工件不升溫或少升溫,因而,高速度加工是選取很高的切削速度與高進給相匹配一起選取較小的背吃刀量;
(6)注意刀尖R的補償。