您好,歡迎來到易龍商務網!
【廣告】
發布時間:2020-11-01 09:05  






1.概述
通常,人們把含鉻量>12%或含鎳量>8%的合金鋼稱為不銹鋼。這種鋼在大氣中或在腐蝕性介質中具有一定的耐腐蝕能力,并在較高溫度(>450℃)下具有較高的強度。含鉻量達16%~18%的鋼,稱為耐酸鋼或耐酸不銹鋼,通稱為不銹鋼。
含鉻量達12%以上的鋼在與氧化性介質接觸時,由于電化學作用,表面形成一層富鉻氧化膜,可保護金屬內部不受腐蝕。但在非氧化性腐蝕介質中,不能形成堅固的鈍化膜。為提高鋼的耐腐蝕能力,通常選擇增大鉻的比例或添加可促進鈍化的合金元素,如添加Ni、Mo、Mn、Cu、Nb、Ti、W和Co等。這些合金元素不僅提高了鋼的抗腐蝕能力,同時改變了鋼的內部組織和物理力學性能。其在鋼中的含量不同,對不銹鋼性能產生的影響不同,有的有磁性,有的則無磁性,有的能夠進行熱處理,有的則不能進行熱處理。
不銹鋼被越來越廣泛地應用于航空、航天、化工、石油、建筑以及食品機械行業中。其所含的合金元素對切削加工性能影響較大,文中主要對不銹鋼的切削加工進行了分析。
2.不銹鋼的分類及性能
(1)按不銹鋼主要成分,分為以鉻為主的鉻不銹鋼和以鉻、鎳為主的鉻鎳不銹鋼兩大類。
(2)按不銹鋼金相組織分類:①馬氏體不銹鋼。其含鉻量為12%~18%,含碳量為0.1%~0.5%(有時達1%)。其硬度為170~217HBW,抗拉強度σb為540~1 079MPa,伸長率δ為10%~25%,熱導率к為25.12W/(m·K)。常見的牌號有1Cr13、2Cr13、3Cr13、4Cr13、1Cr17Ni2、9Cr18、9Cr18MoV和30Cr13Mo等。馬氏體不銹鋼通過淬火,可獲得較高的硬度、強度和耐磨性。然而,當鋼中含碳量低于0.3%時,組織不均勻,粘附性強,切削時易產生積屑瘤,且斷屑困難,切削加工性較差。當含碳量達0.4%~0.5%時,切削加工性較好。②鐵素體不銹鋼。其含鉻量為12%~13%。硬度為177~228HBW,抗拉強度σb為363~451MPa,伸長率δ為20%~22%,熱導率к為16.7W/(m·K)。加熱冷卻時組織穩定,不發生相變,所以不能進行熱處理強化,只能靠變形強化,切削加工性相對較好。常見的牌號有0Cr13、0Cr17Ti、0Cr13Si4NbRe、1Cr17、1Cr17Ti、1Cr17Mo2Ti、1Cr28以及1Cr25Ti等。③奧氏體不銹鋼。其含鉻量為12%~25%,含鎳量為7%~20%(或20%以上)。硬度為187~207HBW,抗拉強度σb為481~520MPa,伸長率δ為40%,熱導率к為16.33W/(m·K)。典型牌號有1Cr18Ni9Ti,其他還有00Cr18Ni10、0Cr18Ni12Mo2Ti、0Cr18Ni18Mo2Cu2Ti、1Cr14Mn14Ni、2Cr13Mn9Ni4以及1Cr18Mn8Ni5N等。由于奧氏體不銹鋼含有較多的鎳或錳,加熱時組織不變,故淬火不能使其強化,可通過冷加工硬化來大幅度提高強度和硬度,其硬化程度為基體硬度的1.4~2.2倍,給下一次切削帶來很大困難。其具有優良的力學性能和良好的耐腐蝕能力,無磁性。④奧氏體-鐵素體雙相不銹鋼。與奧氏體不銹鋼相似,僅在組織中含有一定量鐵素體,常見牌號有0Cr21Ni5Ti、1Cr21Ni5Ti、1Cr18Mn10Ni5Mo3N、0Cr17Mn13Mo2N、1Cr17Mn9Ni3Mo3Cu2N、Cr26Ni17Mo3CuSiN以及1Cr18Ni11Si4AlTi等。這類不銹鋼有硬度極高的金屬間化合物析出,強度比奧氏體不銹鋼高,切削加工性能比奧氏體不銹鋼更差。其硬度<277HBW,抗拉強度σb為589~736MPa,伸長率δ為18%~30%。⑤沉淀硬化不銹鋼。這類不銹鋼因含有較高的鉻、鎳和極低的碳,還含有能起沉淀硬化作用的、鋁、鈦和鉬等合金元素,其在回火時析出,產生沉淀硬化,具有很高的硬度和強度。其硬度為363~388HBW,抗拉強度σb為1 138~1 324MPa,伸長率δ為5%~10%,這類鋼具有良好的耐腐蝕性能。常見牌號有0Cr17Ni4Cu4Nb、0Cr17Ni7Al和0Cr15Ni7Mo2Al等。
3.不銹鋼的切削特點
不銹鋼的切削加工性能比45鋼差。若以45鋼的相對切削加工性Kr為1,則奧氏體不銹鋼的相對切削加工性Kr為0.4,鐵素體不銹鋼的Kr為0.48,馬氏體不銹鋼的Kr為0.55。其中以奧氏體和奧氏體-鐵素體雙相不銹鋼的切削加工性差,給切削加工帶來很大困難,其特點如下:
(1)切削加工硬化嚴重。以奧氏體和奧氏體 鐵素體不銹鋼的加工硬化現象為嚴重,硬化層的硬度比基體硬度高1.4~2.2倍,其抗拉強度σb為1 470~1 960MPa。這類不銹鋼塑性大(δ>35%),塑性變形時晶格扭曲,故強化系數大,且奧氏體不穩定,在切削力作用下,部分奧氏體轉變為馬氏體。
(2)切削力大。不銹鋼的高溫強度和硬度高且韌性大,故在切削時所消耗的能量大,即切削抗力大。以奧氏體不銹鋼為例,在切削過程中溫度高達700℃時,其綜合力學性能高于一般結構鋼。加之其在切削過程中的塑性變形大、硬化現象嚴重,增大了切削力,所以不銹鋼的單位切削力為45鋼單位切削力的1.25倍。
(3)切削溫度高。由于不銹鋼在切削時的塑性變形大,切屑與刀具間的摩擦大,加之其熱導率僅為45鋼熱導率的1/3~1/4,散熱條件差,大量切削熱集中在切削區,在相同切削條件下,切削溫度比切削45鋼時高200℃。
齒輪加工工藝介紹
跟著近幾年齒輪加工技能的開展,齒輪資料、齒輪刀具制作和磨齒砂輪的工藝的改進、齒輪機床在精加工齒輪的精度及加工功率方面都有了很大的進步,速度之快出乎幻想。
跟著近幾年齒輪加工技能的開展,齒輪資料、齒輪刀具制作和磨齒砂輪的工藝的改進、齒輪機床在精加工齒輪的精度及加工功率方面都有了很大的進步,速度之快出乎幻想。而且齒輪制作的開展方向不僅涉及成熟的歐美市場,還包括以我國為代表的快速開展市場。
傳統高速鋼滾刀及濕切技能還能走多遠?
硬質合金滾刀和干切加工的推進作用眾所周知。關于齒輪流水線大批量出產,高速鋼滾刀能否被硬質合金滾刀取替?干切是否已成為滾齒加工的必由之路,仍是依然會走濕切之路?
硬質合金滾刀盡管特別適用于滾削轎車用齒輪。但是,硬質合金滾刀在歐洲的運用程度依然不高,這是因為跟著新式的高速鋼資料及刀具涂層技能的開展,硬質合金滾刀與高速鋼滾刀在滾齒時刻上的距離可被控制在15%左右;硬質合金滾刀價格較高,若齒輪工件數量缺乏夠多,運用硬質合金滾刀的本錢會很高;再者,運用硬質合金滾刀時要特別當心,而且滾切參數和相應滾齒程序要編制得很詳盡,只要現代滾齒機才干運用硬質合金滾刀正確滾齒,而若要更新滾齒設備,則需求巨大的投資。就 Samputensili而言,每年約出產25000把滾刀,其中硬質合金類只占3%左右。這就是說,硬質合金滾刀每年的出產量多為750把。
齒輪干切加工則是另外一回事。因為環保要求及處理冷卻廢液的費用很高,歐洲、美國和日本的用戶在挑選時一般會考慮干切滾齒;而在我國、印度等開展我國家,控制污染盡管也是一個火急的要求,但需求時刻。一旦社會對污染問題的控制日益嚴厲后,齒輪干切加工也將會敏捷開展起來。
哪一種齒輪精加工更流行
關于齒輪精加工,剃齒和磨齒之間,哪一種齒輪精加工更流行呢?
這首先要把一種職業與另一種職業區分開來。比方說,轎車工業運用的齒輪絕大多數還依托剃齒進行加工。有些企業也會對后端傳動裝置齒輪進行磨削加工,這只是是為了消除環形圓柱齒輪上發生的任何變形。
上述提到的齒輪加工時刻削減,首要歸功于新式齒輪刀具、現代齒輪機床的開展及由此帶來的精加工余量大幅削減和磨前齒輪質量的進步。另外,與磨齒機比較,現代數控剃齒機常是價半功倍,可獲得熱處理前的齒輪等級(高達DIN5-6等級);而且與齒輪螺紋磨床磨削比較,加工周期也較短。
關于轎車工業的齒輪,尤其是那些用在主動變速器的小齒輪,咱們可以將剃齒加工后熱處理形成的變形控制在幾個微米;另外,經過齒形和齒向的批改有助于補償變形。因為現代剃刀刃磨機的出現,如Samputensili公司所產生的S400GS,齒形、齒向兩個參數可快速簡略修形;批量出產的時分,剃齒加工比磨削的優點多許多,比較較而言,剃齒既能保證質量,價格又合理。
Samputensili 是齒輪機械職業名列前茅的公司之一,近年來其制作的剃刀還沒顯示出緩慢增產的征兆。與此同時,齒輪磨削機床出產數量也在不斷上升。齒輪加工工藝的飛速開展,齒輪機床所的操作快速,齒輪磨輪也有了敏捷開展。這首要表現在陶瓷磨具、CBN砂輪、電鍍磨輪等方面。用上述磨具來進行齒輪磨削加工,使加工周期縮短。
正因為加工周期逐步縮小,齒輪磨削加工的本錢也隨之大幅降低。需求指出的是,有些工業對齒輪質量的要求很高,有的工業需求實現特別的齒形,所以必須經過磨削來完成。例如,重貨車工業、航空工程以及用于發電、變電的減速器工業,都依托磨削去做齒輪精加工。在這些大功率工業中,齒輪磨削已處于決對優勢。
齒輪批量出產的新技能
齒輪的質量要求越來越高,變速噪音要求越來越低。要到達質量、噪音的兩層目標,這就要求進行精度更高的齒輪加工,實現極為復雜的齒輪齒向和齒形,意圖是把變速傳動的誤差降到蕞小。這意味著,在今后一個時期內,磨削依然是齒輪成批出產的首要辦法,齒輪磨削這項加工工藝或許會愈加廣泛運用。但要特別注意齒輪加工的單位本錢。至今,本錢低、收效大的剃齒帶來的優點是很明顯的。磨削在齒輪精加工中取得圓滿成功時,剃齒才或許大規模地被它替代。總歸,不管挑選哪一種齒輪加工辦法,都要多注意實際運用情況。
鑒于滾齒加工現在取得了相當大的開展,很有或許滾齒后所獲的也不再需求進行剃齒。齒輪燒結技能的進一步開展對齒輪制作也做出較大的貢獻,但是此辦法現在正在處于萌芽狀況,很難經確預測未來開展趨勢。
正如上面所說,盡管齒輪加工技能開展變化很大,但是齒輪的單位加工本錢肯定不會改動。在大批量流水出產線上,齒輪加工結構調整應該以這個參數為導向。新工藝的開展關于質量、精度的進步大有裨益。跟著齒輪產品技能的精細化,對這兩個關鍵要素的要求越來越嚴厲。盡管滿意這么高的要求非常難,咱們也必須要追求高規范。但是,光著眼于高指標還不夠,咱們更要重視的是到達價廉物美的規范,不然再好的齒輪新工藝、新功能也不會遭到市場的歡迎,齒輪技能開展水平也不會進而改進。在技能含量高的職業上,應該同時并存工藝精密和價格合理的趨勢。
齒輪是工業出產中的重要根底零件,其加工技師和加工能力反映一個國家的工業水平。實現齒輪加工數控傾和主動化、加工和檢測的一體化是現在齒輪加工的開展趨勢。而且,齒輪被廣泛地運用于機械設備的傳動體系中,滾齒是運用廣的切齒辦法,傳統的機械滾齒機床機械結構非常復雜,一臺主電機不僅要驅動展成分度傳動鏈,還要驅動差動和進給傳動鏈,各傳動鏈中的每一個傳動元件自身的加工誤差都會影響被加工齒輪的加工精度,同時為加工不同齒輪,還需求更換各種掛輪調整起來復雜費時,大大降低了勞動出產率。
以國外數控體系為干流的數控滾齒機的出現,大大進步了齒輪加工能力和加工功率。我國現在真正能夠出產數控滾齒機的廠家較少,且運用的多是德國西門子數控體系,加工中模數齒輪,沒有自主產權的核心技能,缺少國際競爭力。在這樣的布景下,海德盟數控專心于滾齒機體系的研發,為齒輪加工職業規劃出專業的解決方案,真正的做到了讓我國人用上自己高擋數控體系!
在批量加工如圖1所示的高溫合金球形軸承內球面時,原編制工藝道路為:粗加工→去應力→精車內球面→內球面開安裝槽→探傷→查驗→油封。
為驗證工藝,實驗選用如圖2所示高速鋼尖刀(假定刀尖圓弧半徑為零),前角為0o,刃傾角為0o,調整刀尖與車床主軸反轉中心線等高,在新購精細數控車床上編程精車3件45鋼制內球面φ19.15 0.0130 mm。
由于通用內徑量具無法實施在線丈量內球面φ19.15 0.0130 mm,所以在車床上選用改制專用測具(見圖3)檢測,直徑合格,經三坐標丈量機復檢,直徑合格,球面概括度差錯為0.005mm(小于直徑公役一半),合格。
但將零件材料改為高溫合金GH605,刀具改為YW1硬質合金尖刀后,用與高速鋼尖刀同樣的切削條件試車3件,經三坐標查驗全部不合格,原因是球面概括度差錯為0.03~0.05mm,經仔細觀察發現刀尖已磨損,且編程時沒有選用刀尖圓弧半徑補償程序。為此,改用如圖4所示SANDEVIK菱形可轉位機夾硬質合金刀具VCMW070204加工,刀尖圓弧半徑為rε=0.4mm,前角為0o,刃傾角為0o,調整刀尖與車床主軸中心線等高,選用刀尖圓弧半徑補償程序編程,加工了3件,經三坐標丈量查驗,3件全部不合格,原因是球面概括度差錯為0.015~0.02mm。至此,證明原工藝是不現實的。為了、經濟批量加工,改用了如下工藝道路:粗加工→去應力→精車內球面→內球面開裝配槽→用外球面形狀研磨具研磨內球面達圖樣要求→探傷→查驗→油封。工藝改進后已成功加工出一批合格產品。
2.精車內球面概括度超差問題
早在數控車床沒有普及的時代,用成型車刀精車之后再研磨的工藝辦法成功地加工出如圖5所示的球面上色量規(其技術要求是:環規按塞規上色修合,上色面積100%)。現在數控車床替代了一般車床,數字程序替代了原來成型車刀,卻沒有加工出圖1所示的零件。現剖析如下:
(1)精細球面加工工藝基礎。精細球面能夠看作是精細半圓(見圖6)繞經過該半圓圓心的剖分線反轉一周構成的反轉體。
在一般車床上用圓弧構成型樣板刀加工時(見圖7),樣板刀圓弧半徑是所車球的半徑,樣板刀圓弧刃的圓心有必要準確調整到車床主軸反轉軸線上,且圓弧刃地點平面與車床主軸反轉中心線等高共面,才干車出精細圓球面。為了完成以上條件,照顧到加工對刀便利,通常調整圓弧樣板切削刃安裝高度,使圓弧刃地點平面與車床主軸反轉軸線等高(共面),再經過車削丈量車出球面直徑,確保圓弧切削刃圓心坐落車床主軸反轉中心線上。
當圓弧刃地點平面與車床主軸反轉中心線共面但圓弧刃圓心與車床反轉中心間隔不為零時,車出的球面就不圓,而是橢球(見圖8)。
當圓弧刃平面平行于車床主軸反轉中心線,但高于或低于車床反轉軸線(即不共面)時,只要直徑大于所車球面的水平截面圓直徑,與圓弧刃構成的圓位置重合時,才有或許車成圓球,但此刻所車球面直徑已大于要求直徑(見圖9)。
當圓弧構成型切削刃或數控刀尖車出的軌道圓弧(以下簡稱母線圓弧)地點平面平行于車床主軸反轉中心線,但高于或低于車床主軸反轉中心線(以下簡稱車床軸線)時,即便母線圓弧半徑很準確且其圓心位置也準確坐落包括車床軸線的鉛垂面內,假定圖樣要求球面半徑為R,母線圓弧地點平面與車床軸線間隔為H,則車出的球面半徑為(R2 H2)0.5mm,若為了確保球面半徑R持續進刀,則車成橢球(見圖10)。
總歸,有必要確保母線圓弧半徑和母線圓弧圓心準確調整到車床軸線上,且母線圓弧與車床軸線等高共面,才干車出預訂半徑的精細圓球,三者缺一不可。
(2)數控車床加工精細內球面。首要調整車刀安裝高度使刀尖與數控車床軸線等高,當運用刀尖圓弧半徑為零(假定理想刀尖)的車刀編程時,使刀尖走過的圓弧軌道半徑等于球面半徑;當運用刀尖圓弧半徑不等于零的圓弧刀尖車刀加工時,運用刀尖圓弧半徑補償程序編程。對不具備刀尖圓弧半徑主動補償功用的經濟型數控車床,假定圖樣要求球面半徑為R,刀尖圓弧半徑為rε,可選用刀尖圓弧圓心軌道編程,刀尖圓弧圓心編程半徑為(R-rε)。這樣切削球面時,圓弧切削刃逐點參加切削,母線圓弧半徑R相當于半徑為(R-rε)的圓等距rε后得出的(見圖11)。
當刀尖與數控車床軸線不等高時,假如按母線圓弧圓心和車床軸線坐落同一鉛垂面準則進刀,在不考慮其他原因的狀況下車出的球面直徑差錯由公式(1)核算:
ΔR=(R2 H2)0.5-R (1)
式中,R為所車球面半徑,H為刀尖走過的母線圓弧平面高于或低于車床軸線的間隔。當R=19.15÷2=9.575(mm),ΔR=0.013÷2=0.006 5(mm)。由公式(1)核算出H=0.35mm。也就是說,當刀尖高于或低于車床軸線0.35mm時,車出的球面就超出公役帶。在批量生產高溫合金零件時,遍及運用可轉位不重磨機夾刀片,經查閱SANDEVIK刀具手冊,精度等級為M的刀片厚度公役為±0.13mm,假定地一次將切削刃調整到與車床軸線等高,那么,當替換刀片時,如不調整刀尖高度,壞的狀況是刀尖與車床軸線間隔為0.26mm,其小于0.35mm,可見獨自由刀尖高度引起的球面差錯不會超出公役帶。
當刀尖高度與車床軸線等高時,在不考慮機床進給空隙影響時,刀尖圓弧半徑差錯是影響球面加工的直接要素。肯定的尖刀是不存在的,假定刀尖圓弧半徑為零的車刀耐用度很低,不適合批量加工高溫合金零件,選用刀尖圓弧半徑補償程序編程時,有必要輸入刀尖圓弧半徑數值,經查閱SANDEVIK刀具手冊,仿形加工用圓弧切削刀具刀尖圓弧直徑2rε公役為±0.02mm。而SANDEVIK刀片VCMW070204,刀尖圓弧半徑為rε=0.4mm,沒有給出公役,查國標GB2078—87,刀片VCMW070204刀尖圓弧半徑為rε=0.4±0.10mm,數控系統主動將理想刀尖圓弧半徑補償到母線圓弧加工中,刀尖圓弧半徑差錯以1﹕1倍率影響到加工球面半徑差錯。經過作圖與理論核算,能夠算出,在圖1所示軸向長度14mm范圍內,包括在公役為0.006 5mm圓度公役帶內理想圓弧半徑為R=9.575±0.013 9mm,當不考慮其他要素影響,按刀尖圓弧圓心R=(9.575-0.4)mm編程時,刀尖圓弧半徑有必要控制在rε=0.4±0.013 9mm。由此可推理,尖刀加工,刀尖磨損后刀尖圓角半徑有必要是rε≤0.013 9mm才有或許車出符合公役要求的內球面,當刀尖磨損至rε>0.013 9mm時,將車出Z向偏長的橢圓形球面;假如運用圓弧刀尖刀具加工,刀具半徑有必要控制在rε=0.4±0.013 9mm,而刀片VCMW070204的刀尖rε=0.4±0.10mm,不符合球面的精度加工要求。可見,獨自由刀尖圓弧半徑引起的球面加工直徑差錯已超出球形軸承內球面φ19.15 0.0130 mm的加工要求,假如運用刀片VCMW070204加工,有必要精修刀尖圓弧半徑精度,使得rε<0.013 9mm。
(3)進給絲杠螺母副空隙對加工球面的影響。現代數控車床遍及選用滾珠絲杠螺母副作為伺服進給執行元件,盡管滾珠絲杠螺母副進行了預緊,在受載及運轉中不可避免會發生回程空隙。在編程時有必要引起注意,避免回程空隙引起形位差錯。在加工圖4所示零件時,能夠選用一段程序從A點車到C點,但車刀在經過B點時,X軸進給由正向轉換為反向,反向脈沖使絲杠反轉,消除空隙所需的反轉沒有使車刀得到應有的X反向進給,形成AB段與BC段形狀不對稱(見圖12),形成球面不圓。當回程空隙超越0.065mm時,車出的球面就超出
公役帶。因此,當車削精細球面時,假如車床回程空隙超越零件公役1/3,有必要編兩段程序,一段從A到B,另一段從C到B。這樣避免了圖12所示形狀差錯,但會發生如圖13所示由Z軸進給反向形成的形狀差錯,盡管左右是對稱的,但晦氣于球形研磨東西定心。
為此,在編程時選用積極補償的辦法,使圓弧AB段、CB段Z向各少進給0.005mm(沿X向少進給0.000 001 3mm),即便AB、CB兩端圓弧在B點相交,B點不再是圓的象限點,而是脫離象限點的圓上點,精車后橢球形狀如圖14所示。
關于一種特定的鎳基合金,在特定的環境中存在著多種變量,包含:濃度、溫度、通風姿、液(氣)流速度、雜質、磨蝕、循環工藝條件等。這些變量會產生各種各樣的腐蝕問題。這些問題都能在鎳及其他合金元素中找到答案。
金屬鎳直到達到熔點之前一直保持著奧氏體,面心立方結構。這就給韌脆轉變供給了自由度,同時也大大減小了因其他金屬一起并存而呈現的制作問題。在電化序上,鎳比鐵慵懶而比銅活波。因而,在還原性環境中,鎳比鐵要耐腐蝕,但沒有銅耐腐蝕。在鎳的基礎上,加上鉻之后,使合金具備了抗癢化功能,由此能夠產生許多種應用規模十分廣泛的合金,使他們能夠對還原性環境和氧化性環境都有蕞佳的抵抗力。
鎳基合金與不銹鋼和其他鐵基合金比較,在固溶狀態下能夠容納更多的合金元素,而且還能保持很好的冶金穩定性。這些要素允許增加多種多樣的合金元素,使鎳基合金大量的應用在千差萬別的腐蝕環境中。
鎳基合金中常見的元素主要有:
鎳Ni
供給冶金穩定性、進步熱穩定性和可焊性、進步對還原性酸和柯性鈉的抗腐蝕性、進步尤其是在氯化物和柯性鈉環境中的抗應力腐蝕開裂功能。
鉻Cr
進步抗癢化和高溫抗癢化、抗硫化功能、進步抗點蝕、間隙腐蝕功能。
鉬Mo
進步對還原性酸的抗腐蝕性、進步含氯化物水溶液環境下的抗點蝕、間隙腐蝕的功能、進步高溫強度。
鐵Fe
進步對高溫滲碳環境的抵抗性、下降合金成本、操控熱膨脹。
銅 CuCu
進步對還原性酸(尤其是那些用于空氣不流轉場合的硫酸和輕氟酸)和鹽類的抗腐蝕性、銅增加到鎳-鉻-鉬-鐵合金中有助于進步對輕氟酸、磷酸和硫酸的抗腐蝕性。
鋁Al
進步高溫抗癢化性、進步時效硬化。
鈦Ti
與碳結合,減少了熱處理時發作碳化鉻沉積形成的晶間腐蝕、進步時效強化。
鈮Nb
與碳結合,減少了熱處理時發作碳化鉻沉積形成的晶間腐蝕、進步抗點蝕、間隙腐蝕功能、進步高溫強度。
鎢W
進步抗還原性酸和部分腐蝕的功能、進步強度和可焊性。
氮N
進步冶金穩定性、進步抗點蝕、間隙腐蝕功能、進步強度。
鈷Co供給增強的高溫強度、進步抗碳化、抗硫化功能。
這些合金元素中許多都能夠與鎳在很寬的成分規模內結合形成單相固溶體,保證合金在許多腐蝕條件下都具有杰出的抗腐蝕性。合金在完全退火的狀態下,也具有杰出的力學功能,而無需憂慮制作加工或熱加工中帶來的有害的冶金改變。許多高鎳合金能夠通過固溶硬化、碳化物沉積、沉積(時效)硬化和彌散強化等方式進步強度。