您好,歡迎來到易龍商務網!
【廣告】
發布時間:2020-11-09 09:20  






磁控濺射鍍膜機工藝
(1)技術方案 磁控濺射鍍光學膜,有以下三種技術路線: (a)陶瓷靶濺射:靶材采用金屬化合物靶材,可以直接沉積各種氧化物或者氮化物,有時候為了得到更高的膜層純度,也需要通入一定量反應氣體); (b)反應濺射:靶材采用金屬或非金屬靶,通入稀有和反應氣體的混合氣體,進行濺射沉積各種化合物膜層。 (c)離子輔助沉積:先沉積一層很薄的金屬或非金屬層,然后再引入反應氣體離子源,將膜層進行氧化或者氮化等。 采用以上三種技術方案,在濺射沉積光學膜時,都會存在靶zhong毒現象,從而導致膜層沉積速度非常慢,對于上節介紹各種光學膜來說,膜層厚度較厚,膜層總厚度可達數百納米。無心插柳技術性的出現和運用早已親身經歷了很多環節,當初,僅僅簡易的二極、三極充放電無心插柳堆積。這種沉積速度顯然增加了鍍膜成本,從而限制了磁控濺射鍍膜在光學上的應用。
(2)新型反應濺射技術 筆者對現有反應濺射技術方案進行了改進,開發出新的反應濺射技術,解決了鍍膜沉積速度問題,同時膜層的純度達到光學級別要求。表2.1是采用新型反應濺射沉積技術,膜層沉積速度對比情況。
想要了解更多 磁控濺射鍍膜機的相關內容,請及時關注創世威納網站。
磁控濺射鍍膜機技術原理
真空磁控濺射鍍膜技術是通過真空磁控濺射鍍膜機實現的,鍍膜機內由不同級別的真空泵抽氣,在系統內營造出一個鍍膜所需的真空環境,真空度要達到鍍膜所需的本底真空,一般在(1~5)×10-8 Pa。在真空環境中向靶材(陰極)下充入工藝氣體氣(Ar),氣在外加電場(由直流或交流電源產生)作用下發生電離生成離子(Ar ),同時在電場E的作用下,離子加速飛向陰極靶并以高能量轟擊靶表面,使靶材產生濺射。在濺射粒子中,中性的靶原子(或分子)沉積在PET基片上形成薄膜。同時被濺射出的二次電子在陰極暗區被加速,在飛向基片的過程中,落入設定的正交電磁場的電子阱中,直接被磁場的洛倫茲力束縛,使其在磁場B的洛倫茲力作用下,以旋輪線和螺旋線的復合形式在靶表面附近作回旋運動。電子e的運動被電磁場束縛在靠近靶表面的等離子區域內,使其到達陽極前的行程大大增長,大大增加碰撞電離幾率,使得該區域內氣體原子的離化率增加,轟擊靶材的高能Ar 離子增多,從而實現了磁控濺射高速沉積的特點。在運用該機理開發磁控膜的過程中,要注意以下幾個問題:①保證整體工藝中各個環節的可靠性。具體包括靶材質量、工藝氣體純度、原膜潔凈程度、原膜質量等基礎因素,這一系列因素會對鍍膜產品的終質量產生影響。在上新時代80時代初,在全球最開始采用進口真空泵磁控濺射制作工藝實用化生產加工窗膜。②選擇合適的靶材。要建立的膜系是通過對陰極的前后順序布置實現的。③控制好各環節的工藝性能及參數。如適合的本底真空度、靶材適用的濺射功率、工藝氣體和反應氣體用量與輸入均勻性、膜層厚度等。總之,只有控制好以上各因素,才能夠保證所開發的鍍膜PET具有穩定的顏色、優異的性能和耐久性。
如需了解更多 磁控濺射鍍膜機的相關信息,歡迎關注創世威納網站或撥打圖片上的熱點電話,我司會為您提供專業、周到的服務。
磁控濺射中靶zhong毒是怎么回事,一般的影響因素是什么?
靶zhong毒的影響因素
影響靶zhong毒的因素主要是反應氣體和濺射氣體的比例,反應氣體過量就會導致靶zhong毒。反應濺射工藝進行過程中靶表面濺射溝道區域內出現被反應生成物覆蓋或反應生成物被剝離而重新暴露金屬表面此消彼長的過程。如果化合物的生成速率大于化合物被剝離的速率,化合物覆蓋面積增加。只是在化學活性強的金屬、難容金屬、介質以及化合物等材料上得到了少量的應用。在一定功率的情況下,參與化合物生成的反應氣體量增加,化合物生成率增加。如果反應氣體量增加過度,化合物覆蓋面積增加,如果不能及時調整反應氣體流量,化合物覆蓋面積增加的速率得不到抑制,濺射溝道將進一步被化合物覆蓋,當濺射靶被化合物全部覆蓋的時候,靶完全zhong毒。
創世威納專業生產、銷售 磁控濺射鍍膜機,以下信息由創世威納為您提供。

濺射鍍膜
濺射鍍膜就是在真空中利用荷能粒子轟擊靶表面,使被轟擊出的粒子沉積在基片上的技術。通常,利用低壓惰性氣體輝光放電來產生入射離子。陰極靶由鍍膜材料制成,基片作為陽極,真空室中通入0.1-10Pa的ya氣或其它惰性氣體,在陰極(靶)1-3KV直流負高壓或13.56MHz的射頻電壓作用下產生輝光放電。磁控濺射鍍膜機工藝(1)技術方案磁控濺射鍍光學膜,有以下三種技術路線:(a)陶瓷靶濺射:靶材采用金屬化合物靶材,可以直接沉積各種氧化物或者氮化物,有時候為了得到更高的膜層純度,也需要通入一定量反應氣體)。電離出的ya離子轟擊靶表面,使得靶原子濺出并沉積在基片上,形成薄膜。濺射方法很多,主要有二級濺射、三級或四級濺射、磁控濺射、對靶濺射、射頻濺射、偏壓濺射、非對稱交流射頻濺射、離子束濺射以及反應濺射等。