您好,歡迎來(lái)到易龍商務(wù)網(wǎng)!
發(fā)布時(shí)間:2020-08-07 03:32  
【廣告】








干燥設(shè)備專用風(fēng)機(jī)在實(shí)際應(yīng)用過(guò)程中,葉片型線的優(yōu)化可能面臨一個(gè)問(wèn)題。不同葉片高度的不同進(jìn)水條件導(dǎo)致葉片型線優(yōu)化結(jié)果差異過(guò)大,難以對(duì)葉片型線進(jìn)行過(guò)度優(yōu)化。為此,本文提出了多截面輪廓協(xié)同優(yōu)化的方法,建立了輪廓幾何與輪廓目標(biāo)函數(shù)之間的關(guān)系,使得到的輪廓滿足三維實(shí)際要求。在優(yōu)化過(guò)程中,增加了葉片型線的幾何分析和設(shè)計(jì)點(diǎn)氣流角的調(diào)整模塊,以保證獲得的葉片型線能達(dá)到與原型相同的氣流轉(zhuǎn)向能力。同時(shí),干燥設(shè)備專用風(fēng)機(jī)設(shè)計(jì)點(diǎn)的氣動(dòng)性能滿足一定要求,否則,可以以罰函數(shù)的形式盡快完成葉型的氣動(dòng)分析,提高優(yōu)化過(guò)程的快速性。在確定優(yōu)化目標(biāo)時(shí),綜合考慮了設(shè)計(jì)點(diǎn)的性能和非設(shè)計(jì)條件,干燥設(shè)備專用風(fēng)機(jī)對(duì)有效范圍內(nèi)的剖面性能進(jìn)行了研究。目標(biāo)函數(shù)括號(hào)中的項(xiàng)為設(shè)計(jì)點(diǎn)損失,第二項(xiàng)為有效流入流角范圍,邊界為設(shè)計(jì)點(diǎn)損失的1.5倍,第三項(xiàng)為失速裕度,第四項(xiàng)為有效流入流角范圍內(nèi)的平均損失,第五項(xiàng)為平均損失差的方差。有效流入角范圍內(nèi)的分布。分子是分析葉片外形的氣動(dòng)性能,分母是原型參考值。干燥設(shè)備專用風(fēng)機(jī)利用加權(quán)因子w對(duì)截面之間的關(guān)系進(jìn)行加權(quán),設(shè)置目標(biāo)函數(shù),得到損失小、失速裕度高的多截面S1剖面。SatishKoyyalamudi和Nagpurwala[17]對(duì)離心式壓縮機(jī)的導(dǎo)葉進(jìn)行了處理。各參數(shù)的權(quán)重和各截面的權(quán)重系數(shù)決定了優(yōu)化目標(biāo)是集中于中間截面的性能,以及中間截面的損失和末端截面的失速裕度。
不同干燥設(shè)備專用風(fēng)機(jī)靜葉設(shè)計(jì)點(diǎn)90%葉片高度剖面上的壓力分布。從圖中不難看出,原型直葉片的進(jìn)口具有明顯的正攻角,端彎葉片的載荷由于分離流動(dòng)而減小。由于受葉片端部彎曲的影響,三維葉片的攻角幾乎為零,并且由于端部流動(dòng)的改善,載荷甚至略高于原型直葉片。研究了不同靜葉對(duì)單級(jí)風(fēng)扇級(jí)性能的影響。干燥設(shè)備專用風(fēng)機(jī)帶有三個(gè)不同定子葉片的單級(jí)風(fēng)扇級(jí)的效率特性。從干燥設(shè)備專用風(fēng)機(jī)中不難看出,端部彎曲定子可以有效地提高裕度,但由于定子損耗的增加,級(jí)效率降低了1.39%。前緣彎曲引起的葉片反向彎曲效應(yīng)被葉片正向彎曲疊加所抵消。舞臺(tái)效率略有提高,高點(diǎn)提高0.26%。失速邊界越近,風(fēng)扇級(jí)效率越明顯。同時(shí),干燥設(shè)備專用風(fēng)機(jī)轉(zhuǎn)子出口頂部的靜壓力隨著定子葉片頂部的功能力的增加而降低(如圖21所示,轉(zhuǎn)子葉片出口直徑上的靜壓力)。結(jié)果表明,錐形間隙能有效地控制間隙內(nèi)的泄漏流速,減少間隙內(nèi)的堵塞,從而提高其整體性能。在方向分布上,將定子出口處的背壓設(shè)置為接近失速的原型級(jí)工況,背壓為114451pa,風(fēng)機(jī)的失速裕度進(jìn)一步從27.1%擴(kuò)大到48.8%,推遲了葉尖泄漏引起的失速。

介紹了一套高負(fù)荷干燥設(shè)備專用風(fēng)機(jī)的氣動(dòng)設(shè)計(jì)過(guò)程,包括參數(shù)選擇、葉片形狀優(yōu)化和三維葉片的設(shè)計(jì)思想。在此基礎(chǔ)上,完成了高負(fù)荷軸流風(fēng)機(jī)壓力比1.20的初步設(shè)計(jì),負(fù)荷系數(shù)高達(dá)0.83。其次,在初步設(shè)計(jì)方案中,通過(guò)對(duì)干燥設(shè)備專用風(fēng)機(jī)靜葉多葉高處S1流面剖面的協(xié)調(diào)優(yōu)化,有效地減少了靜葉損失,提高了風(fēng)機(jī)的裕度。同時(shí),采用三維葉片技術(shù),提高了定子葉片的端部流動(dòng),提高了定子葉片端部區(qū)域的工作能力。風(fēng)機(jī)裕度由27.1%擴(kuò)大到48.8%。優(yōu)化葉頂間隙形狀可以有效地提高軸流風(fēng)機(jī)的性能。采用FLUENT軟件對(duì)OB-84動(dòng)葉可調(diào)軸流風(fēng)機(jī)在均勻和非均勻間隙下的性能進(jìn)行了數(shù)值模擬,討論了不同間隙形狀對(duì)泄漏流場(chǎng)和間隙損失分布的影響。結(jié)果表明,在平均葉頂間隙不變的前提下,錐形間隙風(fēng)機(jī)的總壓力和于均勻間隙風(fēng)機(jī),區(qū)范圍擴(kuò)大,錐形間隙越大,性能改善越顯著;錐形間隙改變了間隙內(nèi)渦量場(chǎng)的分布,減少了葉尖泄漏損失,增強(qiáng)了干燥設(shè)備專用風(fēng)機(jī)葉片上、中部的功能力。風(fēng)機(jī)的性能低于均勻間隙的性能。錐形葉片的葉尖間隙形狀可以作為提高風(fēng)機(jī)性能的重要手段。然而,在干燥設(shè)備專用風(fēng)機(jī)設(shè)計(jì)結(jié)果與設(shè)計(jì)目標(biāo)的壓力比與效率之間仍存在一定的差距,需要進(jìn)一步的詳細(xì)設(shè)計(jì)來(lái)彌補(bǔ)。

GAMBIT軟件用于干燥設(shè)備專用風(fēng)機(jī)模型建立和網(wǎng)格生成。考慮到干燥設(shè)備專用風(fēng)機(jī)葉片翼型結(jié)構(gòu)的復(fù)雜性和頂部區(qū)域的三維流動(dòng),首先選擇三角形網(wǎng)格劃分葉片頂部,并利用尺寸函數(shù)對(duì)網(wǎng)格進(jìn)行細(xì)化,以保證干燥設(shè)備專用風(fēng)機(jī)網(wǎng)格質(zhì)量。其它區(qū)域的網(wǎng)格劃分為動(dòng)葉區(qū)域網(wǎng)格作為參考,采用結(jié)構(gòu)化/非結(jié)構(gòu)化混合網(wǎng)格。為了保證精度和網(wǎng)格獨(dú)立性,對(duì)原風(fēng)機(jī)在216萬(wàn)、245萬(wàn)、286萬(wàn)和337萬(wàn)網(wǎng)格條件下的性能進(jìn)行了模擬。結(jié)果表明,隨著網(wǎng)格數(shù)量的增加,總壓和效率逐漸接近樣本值,337萬(wàn)和286萬(wàn)網(wǎng)格的總壓和效率偏差分別為0.085%和0.024%。綜合模擬精度和網(wǎng)格數(shù)確定了所用的總網(wǎng)格數(shù)。這個(gè)數(shù)字是286萬(wàn)。其中動(dòng)葉面積198萬(wàn)片,集熱器、導(dǎo)葉面積和擴(kuò)壓管網(wǎng)格數(shù)分別為30萬(wàn)片、26萬(wàn)片和32萬(wàn)片。在模擬葉尖間隙形狀的變化之前,將原始風(fēng)扇的模擬結(jié)果與參考文獻(xiàn)中的干燥設(shè)備專用風(fēng)機(jī)性能進(jìn)行了比較。5倍,第三項(xiàng)為失速裕度,第四項(xiàng)為有效流入流角范圍內(nèi)的平均損失,第五項(xiàng)為平均損失差的方差。結(jié)果表明,在33.31-46.63m3_s-1流量范圍內(nèi),總壓和效率的平均相對(duì)誤差分別為3.0%和1.5%,表明結(jié)果能夠反映風(fēng)機(jī)的實(shí)際性能。