<em id="b06jl"></em>
      <tfoot id="b06jl"></tfoot>
      <tt id="b06jl"></tt>

        1. <style id="b06jl"></style>

              狠狠干奇米,国产igao,亚卅AV,污污内射在线观看一区二区少妇,丝袜美腿亚洲综合,日日撸日日干,91色鬼,夜夜国自一区
              您好,歡迎來到易龍商務網!

              鐵嶺人行通道管理系統生產廠家誠信企業「華瑞電子」

              發布時間:2021-10-15 01:56  

              【廣告】







              人臉識別技術包含三個部分:

              (1)人臉檢測

              面貌檢測是指在動態的場景與復雜的背景中判斷是否存在面像,并分離出這種面像。一般有下列幾種方法:

              ①參考模板法

              首先設計一個或數個標準人臉的模板,然后計算測試采集的樣品與標準模板之間的匹配程度,并通過閾值來判斷是否存在人臉;

              ②人臉規則法

              由于人臉具有一定的結構分布特征,所謂人臉規則的方法即提取這些特征生成相應的規則以判斷測試樣品是否包含人臉;

              ③樣品學習法

              這種方法即采用模式識別中人工神經網絡的方法,即通過對面像樣品集和非面像樣品集的學習產生分類器;






              人臉圖像采集:不同的人臉圖像都能通過攝像鏡頭采集下來,比如靜態圖像、動態圖像、不同的位置、不同表情等方面都可以得到很好的采集。當用戶在采集設備的拍攝范圍內時,采集設備會自動搜索并拍攝用戶的人臉圖像。

              人臉檢測:人臉檢測在實際中主要用于人臉識別的預處理,即在圖像中準確標定出人臉的位置和大小。人臉圖像中包含的模式特征十分豐富,如直方圖特征、顏色特征、模板特征、結構特征及Haar特征等。人臉檢測就是把這其中有用的信息挑出來,并利用這些特征實現人臉檢測。

              主流的人臉檢測方法基于以上特征采用Adaboost學習算法,Adaboost算法是一種用來分類的方法,它把一些比較弱的分類方法合在一起,組合出新的很強的分類方法。

              人臉檢測過程中使用Adaboost算法挑選出一些代表人臉的矩形特征(弱分類器),按照加權的方式將弱分類器構造為一個強分類器,再將訓練得到的若干強分類器串聯組成一個級聯結構的層疊分類器,有效地提高分類器的檢測速度。






              現有的人臉識別系統在用戶配合、采集條件比較理想的情況下可以取得令人滿意的結果。但是,在用戶不配合、采集條件不理想的情況下,現有系統的識別率將陡然下降。比如,人臉比對時,與系統中存儲的人臉有出入,例如剃了胡子、換了發型、多了眼鏡、變了表情都有可能引起比對失敗。也就是說,人如果發生較大變化,系統可能就會認證失敗。光照、姿態、裝飾等,對機器識別人臉都有影響。




              人臉識別門禁閘機在不同場景下使用,具體解決方案不同,我們根據場合尺寸和用戶個性化需求,量身定制人臉識別擺閘、翼閘等閘機設備。

              使用于寫字樓的一款典型,外觀不銹鋼體,呈現橋式扶攔造型,幾組成圓柱形不銹鋼柱穩固立于地面,簡約又不失穩重,亞克力或有機玻璃鑲嵌不銹鋼體中心,整體通透明亮。機箱長度1.6米,高0.99米,通道寬度默認0.65米(可根據使用場景進行調整),電控部分采用進口機芯,整機運行壽命超千萬次以上。