<em id="b06jl"></em>
      <tfoot id="b06jl"></tfoot>
      <tt id="b06jl"></tt>

        1. <style id="b06jl"></style>

              狠狠干奇米,国产igao,亚卅AV,污污内射在线观看一区二区少妇,丝袜美腿亚洲综合,日日撸日日干,91色鬼,夜夜国自一区
              您好,歡迎來到易龍商務(wù)網(wǎng)!

              烘干房耐高溫風(fēng)機在線咨詢「山東冠熙」

              發(fā)布時間:2021-09-12 03:47  

              【廣告】












              從烘干房耐高溫風(fēng)機的一般參數(shù)出發(fā),通過一維徑向參數(shù)和子午向徑向參數(shù)的設(shè)計,得到了初步設(shè)計方案的性能預(yù)測和幾何參數(shù)。初步方案利用現(xiàn)有的標準葉片型線對三維葉片進行幾何建模,通過求解三維穩(wěn)定流場對初步設(shè)計方案進行驗證。一維參數(shù)設(shè)計主要是求解平均半徑氣動參數(shù)的控制方程。采用逐級疊加法對多級壓縮系統(tǒng)進行了氣動計算。同時調(diào)整了烘干房耐高溫風(fēng)機相應(yīng)的攻角、滯后角和損失模型。結(jié)果表明,隨著網(wǎng)格數(shù)量的增加,總壓和效率逐漸接近樣本值,337萬和286萬網(wǎng)格的總壓和效率偏差分別為0。后,得到了平均半徑和子午線流型下的基本氣動參數(shù)。計算中使用的損失和氣流角模型需要大量的葉柵試驗作為支撐。現(xiàn)有的實驗改進模型包括經(jīng)典亞音速葉片型線NACA65、C4和BC10,基本滿足了風(fēng)機的初步設(shè)計要求。為了準確、快速地得到初步設(shè)計方案,將現(xiàn)有的經(jīng)典葉片型線直接用于一維設(shè)計和初步設(shè)計。當設(shè)計負荷超過原模型時,采用MISES方法對S1流面進口斷面進行分析,得到初始滯后角,如本文對高負荷風(fēng)機的設(shè)計。在S2流面設(shè)計中,烘干房耐高溫風(fēng)機采用流線曲率法對S2流面進行了流量計算。為了簡化計算過程,將計算假設(shè)為無粘性和恒定絕熱,忽略了實際渦輪機械中的三維、非定常和粘性流動特性,引入了葉排損失來表示葉柵中流體粘度的影響。通過三維流場的數(shù)值分析,修正了求解S2流面過程中的損失,并通過迭代得到了初步設(shè)計方案。




              本文以方案中烘干房耐高溫風(fēng)機的定子葉片為例進行了詳細設(shè)計,優(yōu)化了S1流面葉型,烘干房耐高溫風(fēng)機采用三維葉片技術(shù)改善了定子葉柵內(nèi)的流動。通過三維數(shù)值模擬,對S2流面設(shè)計中的損失和滯后角模型進行了標定,為葉片三維建模提供了依據(jù)。通過與初步三維設(shè)計結(jié)果的比較,兩種設(shè)計方案的氣動參數(shù)徑向分布一致,證實了烘干房耐高溫風(fēng)機設(shè)計過程中S2流面設(shè)計的準確性和可靠性。由于葉尖泄漏流的存在,葉尖壓力比與氣流角(圖中灰色虛擬線圈所示的面積)之間存在一定的偏差,但通過三維CFD的修正,s2的設(shè)計趨勢預(yù)測了葉尖泄漏流對氣動參數(shù)徑向分布的影響;bec在高負荷下,定子根部出現(xiàn)了氣流分離現(xiàn)象,導(dǎo)致了出口氣流角和S2設(shè)置的初步三維設(shè)計。考慮到優(yōu)化葉頂間隙形狀可以有效地提高風(fēng)機的性能,對OB-84動葉可調(diào)軸流風(fēng)機在均勻間隙、逐漸收縮和逐漸膨脹等六種非均勻間隙下的性能進行了三維數(shù)值模擬。預(yù)測結(jié)果略有不同(圖中橙色虛線圈所示的區(qū)域)。烘干房耐高溫風(fēng)機利用一條非均勻有理B-sline曲線來描述由四個控制點(紅點)控制的曲線,包括前緣點和后緣點。葉片體由四條非均勻曲面、兩個吸力面和兩個壓力面組成,同時與較大切圓(灰圓)和前緣后緣橢圓弧相切。利用MIT MISES程序?qū)1型拖纜葉片進行了流場分析。采用B-L(Baldwin-Lomax)湍流模型和AGS(Abu-Ghamman-Shaw)旁路過渡模型描述了過渡過程。




              與均勻間隙相比,烘干房耐高溫風(fēng)機在平均葉頂間隙不變的前提下,1~3級間隙方案下的風(fēng)機總壓力和效率均高于均勻間隙方案下的風(fēng)機總壓力和效率;前導(dǎo)間隙越大,尾隨間隙越小,性能越明顯。改進是,但隨著烘干房耐高溫風(fēng)機間隙的逐漸收縮,風(fēng)機的性能改善逐漸減小;在設(shè)計流量下,方案2和方案3下的總壓力分別增加20。對于PA和22PA,烘干房耐高溫風(fēng)機效率分別提高0.69%和0.70%,特別是在小流量情況下。方案2和方案3的效率分別提高1.16%和1.20%。同時,方案1-3對應(yīng)的區(qū)(>81%)變寬,根據(jù)總壓的趨勢,喘振裕度增大,穩(wěn)定工作范圍提高。針對葉片高度方向的不均勻進口流動情況,在詳細設(shè)計中采用了端部彎曲技術(shù)來匹配定、轉(zhuǎn)子葉片之間的流動角。但4-6級進風(fēng)機的總壓和效率均低于均勻間隙,隨著間隙的增大,風(fēng)機的性能下降更大。方案6的總壓力和效率分別降低了15pa和0.14%。模擬結(jié)果與參考文獻中給出的結(jié)果一致。以上分析表明,在相同流量范圍的前提下,錐形間隙的區(qū)變寬,相應(yīng)的流量范圍增大,烘干房耐高溫風(fēng)機的穩(wěn)定工作區(qū)增大,設(shè)計流量和左效率明顯提高,措施簡單,易于實施。考慮到風(fēng)機選型中參數(shù)裕度過大,導(dǎo)致軸流風(fēng)機在設(shè)計流量的左側(cè)運行,可以將變細的間隙形狀作為提高風(fēng)機性能的手段。為了分析不同葉尖間隙形狀下風(fēng)機性能變化的內(nèi)在機理,進行了內(nèi)部流動特性和葉輪能力分析。