您好,歡迎來到易龍商務網!
發布時間:2021-09-16 15:44  
【廣告】





人工智能控制器
決策機TMAI模型可以處理大量實時性數據,從數據中挖掘系統能耗潛力,給出超出傳統經驗的控制模式,可進一步精細調控,即使到了深寒期,依然實現節能運行。1、以“室”為終:以室溫為控制目標,穩定室溫,平抑波動;快速調整、穩定室溫,回到供熱的初衷:滿足用戶的室溫舒適。即使到了深寒期,依然實現節能運行。
由于控制簡單,直流傳動在過去得到了廣泛的使用。但由于它們眾所周知的限制以及DSP技術的進步,直流傳動正逐漸被的交流傳動所取代。但近,許多廠商也推出了一些改進的直流驅動產品,但都沒有使用人工智能技術。相信使用人工智能的直流傳動技術能得到進一步的提高。智能技術在電氣傳動技術中占相當重要的地位,特別是自適應模糊神經元控制器在性能傳動產品中將得到廣泛應用
不同的人工智能控制通常用完全不同的方法去討論。但AI控制器例如:神經、模糊、模糊神經,以及遺傳算法都可看成一類非線性函數近似器。這樣的分類就能得到較好的總體理解,也有利于控制策略的統一開發。這些AI函數近似器比常規的函數估計器具有更多的優勢,它們的設計不需要控制對象的模型(在許多場合,很難得到實際控制對象的動態方程,實際控制對象的模型在控制器設計時往往有很多不確實性因素,例如:參數變化,非線性時,往往不知道)。
總而言之,當采用自適應模糊神經控制器,規則庫和隸屬函數在模糊化和反模糊化過程中能夠自動地實時確定。有很多方法來實現這個過程,但主要的目標是使用系統技術實現穩定的解,并且找到的拓樸結構配置,自學習迅速,收斂快速。模糊邏輯控制應用 主要有兩類模糊控制器,Mamdani和Sugeno型。到目前為止只有Mamdani模糊控制器用于調速控制系統中。