您好,歡迎來到易龍商務網!
發布時間:2020-08-13 15:24  
【廣告】





金屬表面處理--粉末冶金
金屬表面處理工藝是怎么的流程?表面處理是通過一種材料經過加工轉化為另一種物體表面的方式叫表面加工,主要是為了提高物體表面的美觀感,金屬表面工藝處理還可以保護材料不受環境污染破壞,目前我們常見的有烤漆和電鍍兩種。
一、電鍍
電鍍是一種化學過程,它是在外界直流電源的作用下通過兩類導電在陽極和陰極兩個電極上進行氧化還原反應的過程。其生產工藝流程為:
電鍍工藝過程一般包括電鍍前預處理﹐電鍍及鍍后處理(鈍化處理)三個階段。
1、鍍前預處理
鍍前預處理的目的是為了得到干凈新鮮的金屬表面﹐為最后獲得高質量鍍層作準備。主要進行脫脂﹐去銹蝕﹐去灰塵等工作。步驟如下﹕1 使表面粗糙度達到一定要求﹐可通過表面磨光﹐拋光等工藝方法來實現。若材料難以切削加工,諸如工具鋼、鈦、鎳合金或不銹鋼,對于MIM最終成型來說,是最有利的,MIM工藝可以一次性成型復雜的幾何形狀特征。2.去油脂﹐可采用溶劑溶解以及化學﹐電化學等方法來實現。第三步 除銹﹐可用機械﹐酸洗以及電化學方法除銹。第四步 活化處理﹐一般在弱酸中侵蝕一定時間進行鍍前活化處理。
二、鈍化處理
所謂鈍化處理是指在一定的溶液中進行化學

處理﹐在鍍層上形成一層堅實致密的﹐穩定性高的薄膜的表面處理方法。鈍化使鍍層耐蝕性大大提高并能增加表面光澤和抗污染能力。這種方法用途很廣﹐電鍍后一般都可進行鈍化處理。
三、烤漆
烤漆一般分為粉體和液體兩種。烤漆的特點是使用性較廣泛,價格相對便宜。烤漆工藝流程:
除油——除銹——水洗——中和——表調——磷化——水洗——烤干——色澤處理
噴漆前的所有工序都稱為前處理,其目的是為了得到良好的涂層,由于沖壓件在制造,加工搬運,保存期間會有油脂,氧化物銹皮,灰塵,銹及腐蝕物等在上面,若不去除將直接影響到涂層的性能,外觀等,所以前處理在涂裝的工藝中占有極為重要的地位。
MIM金屬注射成型工藝
MIM工藝介紹與對比
一、MIM概念及工藝流程
金屬粉末注射成形是傳統粉末冶金技術與塑料注射成形技術相結合的高新技術,是小型復雜零部件成形工藝的一場革命。對于不同的金屬粉末,其混煉時選擇的粘結劑種類也不同,配比自然也不同。它將適用的技術粉末與粘合劑均勻混合成具有流變性的喂料,在注射機上注射成形,獲得的毛坯經脫脂處理后燒結致密化為成品,必要時還可以進行后處理
生產工藝流程如下
配料→混煉→造粒→注射成形→化學萃取→高溫脫粘→燒結→后處理→成品
二、MIM技術特點
金屬粉末注射成形結合了粉末冶金與塑料注射成形兩大技術的優點,突破了傳統金屬粉末模壓成形工藝在產品形狀上的限制,同時利用塑料注射成形技術能大批量、高效率生產具有復雜形狀的零件:如各種外部切槽、外螺紋、錐形外表面、交叉通孔、盲孔、凹臺、鍵銷、加強筋板,表面滾花等
·MIM技術的優點
a.直接成形幾何形狀復雜的零件,通常重量0.1~200g
b.表面光潔度好、精度高,典型公差為±0.05mm
c.合金化靈活性好,材料適用范圍廣,制品致密度達95%~99%,內部組織均勻,無內應力和偏析
d.生產自動化程度高,無污染,可實現連續大批量清潔生產

MIM產品典型應用領域
航空航天業:機翼鉸鏈、火箭噴嘴、渦輪葉片芯子等
汽車業:安全氣囊組件、點火控制鎖部件、渦輪增壓器轉子、座椅部件、剎車裝置部件等
電子業:磁盤驅動器部件、電纜連接器、電子封裝件、手機振子、計算機打印頭等
日用品:表殼、表帶、表扣、高爾夫球頭和球座、縫紉機零件、電動玩具零件等
機械行業:異形銑刀、切削工具、電動工具部件、微型齒輪、鉸鏈等
醫學行業:牙矯形架、剪刀、鑷子、手術刀等
六、適合材質
不銹鋼 Fe合金 Fe-Ni-Co 合金鎢 鈦合金 工具鋼 高速鋼 硬質合金 氧化鋁 氧化鋯
金屬學基礎
鐵碳合金的基本組織
①奧氏體:碳溶于r-Fe中的間隙式固溶體稱為奧氏體,常用A表示。因為面心立方晶格的r-Fe總的間隙量雖比a-Fe的小,但空隙半徑比較大,所以能溶較多的碳。這是因為喂料性能的好壞不會在混煉過程中體現出來,而是會在后續的注射成形工藝中間接影響注射效果和制品的最終性能。碳在r-Fe中的溶解度隨溫度升高而增加,在727度時為0.77%,在1148度時達到峰值2.11%。
奧氏體塑性很好,強度和硬度也比鐵素體高。
②鐵素體:碳溶于a-Fe中的間隙式固溶體稱為鐵素體,常用F表示。通過熱處理可以使滲碳體呈顆粒狀分布在鐵素體基體上,叫做球狀珠光體或粒狀珠光體。因為體心立方晶格的a-Fe總的間隙量雖大,但是間隙半徑卻很小,所以碳在a-Fe中的溶解度很小,室溫下不超過0.005%,隨著溫度升高,溶解度略有增加,在727度時達到峰值,也僅有0.0218%。
鐵素體含碳量很低,其性能接近純鐵,是一種塑性、韌性高和強度、硬度低的組織。
③珠光體:鐵素體和滲碳體組成的機械混合物叫做珠光體,常用P表示。珠光體的平均含碳量為0.77%。☆復雜性MIM工藝適合制造幾何形狀復雜的以及在切削加工中需要轉換位置的多軸零件。其性能介于鐵素體和滲碳體之間。一般情況下,珠光體中鐵素體和滲碳體呈片狀交替分布,稱為片狀珠光體。通過熱處理可以使滲碳體呈顆粒狀分布在鐵素體基體上,叫做球狀珠光體或粒狀珠光體。
④滲碳體:滲碳體是鐵與碳的化合物,常用Fe3C表示。滲碳體的含碳量為6.69%,熔點約為1227度,晶體結構復雜,硬度很高,脆性極大,幾乎沒有塑性。
一般來說,在鐵碳合金中,滲碳體越多,合金就越硬,越脆。
⑤馬氏體:鋼加熱到一定溫度(形成奧氏體)后經迅速冷卻(淬火),得到的能使鋼變硬、增強的一種淬火組織,常用M表示,馬氏體是體心正方結構。
馬氏體轉變速度極快,轉變時體積產生膨脹,在鋼絲內部形成很大的內應力,所以淬火后的鋼絲需要及時回火,防止應力開裂。
粉末冶金生胚強度
粉末冶金生胚強度的概念粉末冶金生坯強度是指冷壓的粉末壓坯的機械強度。粉末冶金零件生坯具有適當的強度是必要的,以便壓坯從陰模中脫出和將其運送到燒結爐而不會損壞。生坯強度取決于金屬粉末的種類與施加的壓力。較好的克服粉塵飛揚,減少配合劑的損失,改善產品質量與工作環境。軟金屬的粉末、不規則顆粒形狀或多孔性顆粒結構的粉末都具有較高的生坯強度。對于軟金屬,用較低的壓力即可生產出能夠進行搬運的壓坯。較硬的粉末則需要較高的壓力。
要理解粉末冶金生坯強度,就必須知道哪種力使金屬之間產生黏著。當使清潔的金屬表面相互接觸時,由于它們之間的接觸面積小,從而它們之間的黏著力小。施加壓力使接觸面積增大,不管顆粒形狀和表面粗糙度如何,這種接觸面積大體上正比于施加的壓力。工藝流程:上件→靜電除塵→噴涂→低溫流平→烘烤技術特點:優點:1、顏色豐富,高光、啞光可選。對粉末冶金生坯強度的這種解釋就將重點放在了建立顆粒之間原子與原子的金屬接觸。如上所述,與球形顆粒粉末相比,不規則形狀顆粒壓制的壓坯具有較高的生坯強度。這種較高的強度來自于粉末冶金壓坯中不規則形狀顆粒之間的相互聯鎖。對相互聯鎖現象的解釋仍然有爭議,但看起來可能是由于在由不規則顆粒壓制的壓坯中,在相當大程度上,相鄰顆粒之間形成了較好的原子接觸。
粉末冶金工藝很適用于大批量生產這類的零件。它可以為各種形狀復雜的零件生產設計且不浪費材料。八、拋光拋光:利用柔性拋光工具和磨料顆粒或其他拋光介質對工件表面進行的修飾加工。不過,制造鐵框在技術上并非易事。在早期開發中,使用傳統潤滑劑,諸如硬脂酸鋅與EBS臘等進行過生產試驗,生坯廢品率高達50%。目前,有通過用溫壓提高生坯密度和通過采用模壁潤滑減少或消除混合粉中的潤滑劑的方法來提高生坯強度。

