您好,歡迎來到易龍商務網!
發布時間:2020-08-09 13:20  
【廣告】





人臉識別的難點
1、圖像光線:識別的視頻和圖片面臨各種環境光源的考驗,可能出現側光、頂光、背光和高光等現象,而且有可能出現各個時段的光照不同,甚至在監控區域內各個位置的光照都不同。
2、人臉姿態和飾物:因為監控是非配合型的,監控人員通過監控區域時以自然的姿態通過,因此可能出現側臉、低頭、抬頭等各種非正臉的姿態和佩戴帽子、黑框眼鏡、口罩等飾物現象。
3、人的臉部存在相似性:不同個體之間特別是同一民族的區別不大,所有人臉的結構都相似,甚至人臉的結構外形都很相似。這樣的特點對于利用人臉進行定位是有利的,但是對于利用人臉區分個體是不利的。再加上化妝的掩蓋及雙胞胎的天然相似性更增加了識別的難度。
4、人臉存在易變性:人臉的外形很不穩定,人可以通過臉部的變化產生很多表情,而在不同觀察角度,人臉的視覺圖像也相差很大。
人臉識別是指能夠識別或驗證圖像或視頻中的主體的身份的技術。人臉識別算法誕生于七十年代初。自那以后,它們的準確度已經大幅提升,現在相比于指紋或虹膜識別等傳統上被認為更加穩健的生物識別方法,人們往往更偏愛人臉識別。讓人臉識別比其它生物識別方法更受歡迎的一大不同之處是人臉識別本質上是非侵入性的。
比如,指紋識別需要用戶將手指按在傳感器上,虹膜識別需要用戶與相機靠得很近,語音識別則需要用戶大聲說話。相對而言,現代人臉識別系統僅需要用戶處于相機的視野內(假設他們與相機的距離也合理)。這使得人臉識別成為了對用戶友好的生物識別方法。這也意味著人臉識別的潛在應用范圍更廣,因為它也可被部署在用戶不期望與系統合作的環境中,比如監控系統中。人臉識別的其它常見應用還包括訪問控制、欺詐檢測、身份認證和社交媒體。

人臉圖像特征提取:人臉識別系統可使用的特征通常分為視覺特征、像素統計特征、人臉圖像變換系數特征、人臉圖像代數 特征等。人臉特征提取就是針對人臉的某些特征進行的。人臉特征提取,也稱人臉表征,它是對人臉進行特征建模的過程。
人臉特征提取的方法歸納起來分為兩大 類:一種是基于知識的表征方法;另外一種是基于代數特征或統計學習的表征方法。基于知識的表征方法主要是根據人臉的形狀描述以及他們之間的距離特性來獲得有助于人臉分類的特征數據,其特征分 量通常包括特征點間的歐氏距離、曲率和角度等。人臉由眼睛、鼻子、嘴、下巴等局部構成,對這些局部和它們之間結構關系的幾何描述,可作為識別人臉的重要特 征,這些特征被稱為幾何特征。基于知識的人臉表征主要包括基于幾何特征的方法和模板匹配法。
人臉識別系統主要包括四個組成部分,分別為:人臉圖像采集及檢測、人臉圖像預處理、人臉圖像特征提取以及匹配與識別。下面宣城盛宇小編給大家介紹一下人臉圖像匹配與識別。
人臉圖像匹配與識別:提取的人臉圖像的特征數據與數據庫中存儲的特征模板進行搜索匹配,通過設定一個閾值,當相似度超過這一閾值,則把匹配得到的結果輸 出。人臉識別就是將待識別的人臉特征與已得到的人臉特征模板進行比較,根據相似程度對人臉的身份進行判斷。這一過程又分為兩類:一類是確認,是一對一 進行圖像比較的過程,另一類是辨認,是一對多進行圖像匹配對比的過程。
