您好,歡迎來到易龍商務網!
發布時間:2020-07-26 14:41  
【廣告】






活塞環主要分為氣環和油環兩種。
活塞環的作用
氣環的作用是保證氣缸與活塞間的密封性,防止漏氣,并且要把活塞頂部吸收的大部分熱量傳給氣缸壁,由冷卻水帶走;油環起布油和刮油的作用,下行時刮除氣缸壁上多余的機油,上行時在氣缸壁上鋪涂一層均勻的油膜。這樣既可以防止機油竄入氣缸中燃燒掉,又可以減少活塞與氣缸壁的摩擦阻力。此外,油環還能起到輔助封氣的作用。
活塞環的工作條件及性能要求
活塞環工作時受到氣缸中高溫、高壓燃氣的作用,溫度較高(尤其是,溫度可達600K)。活塞環在氣缸內做高速運動,加上高溫下部分機油出現變質,使活塞環的潤滑條件變差,難以保證液體潤滑,磨損嚴重。因此,要求活塞環彈性好,強度高、耐磨損。
活塞環的間隙
活塞環會在發動機運轉過程中與高溫氣體接觸發生熱膨脹現象,而周期性的往復運動又使其出現徑向脹縮變形。因此,為了保證正常的工作,活塞環在氣缸內應該具有以下間隙。
d—活塞環內徑;B—活塞環寬度
■ 端隙又稱開口間隙,是指活塞環在冷態下裝入氣缸后,該環在上止點時,環的兩端頭之間的間隙。一般為0.25~0.50mm。
■ 側隙又稱邊隙,是指活塞環裝入活塞后,其側面與活塞環槽之間的間隙。第道環因為工作溫度高,間隙較大,一般為0.04~0.10mm;其他環一般為0.03~0.07mm。油環側隙比氣環小。
■ 背隙是指活塞環裝入氣缸后,活塞環內圓柱面與活塞環槽底部間的間隙,一般為0.50~1.00mm。油環背隙較氣環大,有利于增大存油間隙,便于減壓泄油。
活塞環的泵油作用
由于側隙和背隙的存在,當發動機工作時,活塞環便產生了泵油作用。其原因是,活塞下行時,活塞環靠在環槽的上方,活塞環從缸壁上刮下來的機油充入環槽下方;當活塞上行時,活塞環又靠在環槽的下方,同時將機油擠壓到環槽上方。如此反復運動,就將缸壁上的機油泵入燃燒室。由于活塞環的泵油作用,使機油竄入燃燒室,會使燃燒室內形成積炭和增加機油消耗,并且還可能在環槽(尤其是第道氣環槽)中形成積炭,使環卡死,失去密封作用,甚至折斷活塞環。
氣 環
■ 氣環的密封機理
活塞環有一個切口,且在自由狀態下不是圓環形,其外形尺寸比氣缸的內徑大些,因此,它隨活塞一起裝入氣缸后,便產生彈力而緊貼在氣缸壁上。
活塞環在燃氣壓力作用下,壓緊在環槽的下端面上,于是燃氣便繞流到環的背面,并發生膨脹,其壓力下降。同時,燃氣壓力對環背的作用力使活塞環更緊地貼在氣缸壁上。壓力已有所降低的燃氣,從第道氣環的切口漏到第二道氣環的上平面時,又把這道氣環壓貼在第二環槽的下端面上,于是,燃氣又繞流到這個環的背面,再發生膨脹,其壓力又進一步降低。
如此繼續進行下去,從后一道氣環漏出來的燃氣,其壓力和流速已經大大減小,因而泄漏的燃氣量也就很少了。因此,為數很少的幾道切口相互錯開的氣環所構成的“迷宮式”封氣裝置,就足以對氣缸中的高壓燃氣進行有效的密封。
氣環的斷面形狀及各環間隙處的氣體壓力
■ 氣環的切口
氣缸內的燃氣漏入曲軸箱的主要通路是活塞環的切口,因此,切口的形狀和裝入氣缸后的間隙大小對于漏入曲軸箱的燃氣量有一定的影響,切口間隙過大,則漏氣嚴重,使發動機功率減小;間隙過小,活塞環受熱膨脹后就有可能卡死或折斷。切口間隙值一般為0.25~0.8mm。第道氣環的溫度,因而其切口間隙值。
氣環的切口形狀
直角形切口工藝性好;階梯形切口的密封性好,但工藝性較差;斜口形切口,斜角一般為30°或45°,其密封作用和工藝性均介于前兩種之間,但其銳角部位在套裝入活塞時容易折損;圖中(d)為二沖程發動機活塞環的帶防轉銷釘槽的切口,壓配在活塞環槽中的銷釘,是用來防止活塞環在工作中繞活塞中心線轉動的。
■ 氣環斷面形狀
氣環的斷面形狀
■ 矩形環的優點是結構簡單、制造方便、散熱性好、廢品率低;缺點主要是有泵油作用,容易造成機油消耗量過大并有可能形成燃燒室積炭。另外,矩形環的刮油性、磨合性及密封性較差,現代汽車基本不采用。
■ 錐面環的優點是與氣缸壁的接觸為線接觸,密封和磨合性能較好,刮油作用明顯,容易形成油膜以改善潤滑;缺點是傳熱性能較差。錐面環主要應用在除第道環外的其他環。
■ 扭曲環是當代汽車發動機廣泛應用的一種活塞環,主要是因為扭曲環除具有錐面環的優點之外,還能減小泵油作用,減輕磨損、提高散熱性能。安裝扭曲環時應特別注意:內圓切槽向上,外圓切槽向下,不能裝反。
■ 梯形環的主要優點是能把沉積在環槽中的結焦擠出,從而避免了活塞環被黏結而出現折斷,同時其密封性能優越,使用壽命長;缺點主要是上下兩端面的精磨工藝較復雜。梯形環在熱負荷較大的柴油發動機上使用較多。
■ 桶面環的優點是活塞的上下行程都可以形成楔形油膜以改善潤滑,對活塞在氣缸內擺動的適應性好,接觸面積小,有利于密封;缺點是凸圓弧面加工困難,多用于強化柴油發動機的第道環。
油 環
油環分為普通油環和組合油環兩種。
普通油環是用合金鑄鐵制造的。其外圓面的中間切有一道凹槽,在凹槽底部加工出很多穿通的排油小孔或狹縫。油環上唇的上端面外緣一般均有倒角,可以使油環向上運動時能夠形成油楔。機油可以把油環推離氣缸壁,從而易于進入油環的切槽內。下唇的下端面外緣不倒角,這樣向下刮油能力較強。鼻式油環和雙鼻式油環的刮油能力更強,但加工較困難。
油環及其刮油作用
油環的斷面形狀
對于由三個刮油鋼片和兩個彈性襯環組成的組合式油環,軸向襯環夾裝在第二、第三刮油片之間,徑向襯環使三個刮油片壓緊在氣缸壁上。這種油環的優點是,片環薄,對氣缸壁的比壓(單位面積上的壓力)大,因而刮油作用強;三個刮油片是各自獨立的,故對氣缸的適應性好;重量輕;回油通路大。因此,組合油環在高速發動機上得到較廣的應用。其缺點是制造成本高(片環的外表面必須鍍鉻,否則滑動性不好)。
車刀材料的選擇
常用的硬質合金可根據其制造的合金元素不同,分為以下四類:
1.鎢鈷合金
由碳化鎢和鈷組成,常溫時的硬度為HRA87~92,紅硬性為800--900,代號為YG,常用商標為YG3、YG3X、YG6、YG6X、YG8、YGll等。其中YG3X及YG6X歸于細顆粒碳化鎢合金。YA6則是我國試制成功的一種含有少數碳化鈷的細顆粒硬質合金。
鎢鈷合金冷硬性很高,耐性也較好,宜用于加工脆性資料,如金屬蝕口鑄鐵,也可車削沖擊性較大的工件。因為它的紅硬度較差,在600℃時,鎢鈷合金簡單和切屑粘結,使刀頭前面磨損,故不宜用于車削軟鋼等耐性金屬。
YG6X細顆粒碳化鈷合金耐磨性較好,其強度近似YG6,因而車削冷硬合金鑄鐵、耐熱合金鋼及普通鑄鐵等都有杰出效果。
2.鎢鈦鉆合金
由碳化鎢、碳化鈦及元素鉆組成,代號用YT表明,常用的有YT5、YTl4、YTl5、YT30等商標。鎢鈷鈦合金的冷硬功能和紅硬功能比硬質合金高。在高溫條件下比鎢鈷合金耐熱耐磨、抗粘性大,宜于加工鋼料及其他耐性金屬資料,但因為性脆,不耐沖擊,故不宜加工脆性金屬。
3.鎢鈷鈦鈮合金
它是鎢鈷鈦合金中的新產品,由碳化鎢、碳化鈦、鈷、少數碳化鈮組成,代號為YW,常用商標為YWl、YW2。它的耐磨性和熱硬性都比較好,適用于切削各種鑄鐵和特殊合金鋼材,如不銹鋼、耐熱鋼、高錳鋼等較難加工的資料。
4.鎢鈷鈮類合金
這是一種含有少數碳化鈮的細顆粒鎢鉆類硬質合金,代號為YA,常用商標為YA6。它的耐磨功能更高,適合于不銹鋼、耐熱鋼、特硬鑄鐵、鐵合金、硬塑料、玻璃和陶瓷等的加工。
在選用硬質合金時,應根據硬質合金本身功能特點、加工工件資料和切削條件等因素歸納考慮。
除高速鋼和硬質合金兩種常用車刀切削資料外,還有碳素工具鋼、合金工具鋼、金剛石、陶瓷等。碳素工具鋼、合金工具鋼的切削功能差,而金剛石價格高,以上三者都較少采用。
因為陶瓷資料比硬質合金的紅硬性更高,耐磨性好,價格低,正成為一種使用廣泛的刀具資料,但因為該種資料性脆、怕沖擊、刃磨困難,所以在使用時仍受到一定的限制。
更多資訊敬請重視
非晶合金涂層在加工刀具上的應用
近年來,跟著研討的不斷深入,加工技能高質量、低能耗的特色逐漸受到重視,并在航空航天范疇得到廣泛應用。加工技能包括加工機床、加工刀具和加工工藝等方面。《非晶中國工業開展咨詢》主要從加工刀具的資料涂層技能方面進行介紹,給非晶態合金應用提供新的方向和思路。
加工及對刀具的高要求
加工(High PerformanceMachining,HPM)是在保證零件精度和質量的前提下,經過對加工進程的優化和進步單位時刻資料切除量來進步加工功率和設備利用率、下降生產成本的一種高功能加工技能。在加工體系中,刀具是完成切削加工的工具,直觸摸摸工件并從工件上切去一部分資料,使工件得到契合技能要求的形狀、尺度精度和外表質量。在整個加工進程中,刀具直接與工件觸摸,會呈現嚴峻的刀具磨損現象,因而刀具也是加工進程中的一大消耗品。刀具技能的內涵包括刀具資料技能、刀具結構設計和成形技能、刀具外表涂層技能等,也包含了上述單項技能歸納交叉形成的高速刀具技能、刀具可靠性技能、綠色刀具技能、智能刀具技能等。刀具作為機械制作工藝配備中重要的一類基礎部件。
刀具在切削進程中承受深重的負荷,包括高的機械應力、熱應力、沖擊和振蕩等,如此惡劣的工作條件對刀具功能提出了高要求。挑選刀具資料、設計刀具結構、開展刀具涂層和高功能刀具技能成為進步切削加工水平的關鍵環節。《非晶中國工業開展咨詢》主要從刀具涂層技能等方面對刀具進行介紹,以促進先進刀具的開發,為進步制作技能水平發揮應有的效果。
加工刀具的外表涂層
刀具外表涂層以增效和延壽為目的,是將耐高溫、耐磨損的資料涂覆在刀具基體資料外表。涂層作為一個化學屏障和熱屏障,減少了刀具與工件間的擴散和化學反應,從而減少了刀具的月牙槽磨損。涂層刀具具有外表硬度高、耐磨性好、化學功能穩定、耐熱耐氧化、摩擦因數小和熱導率低一級特性。現在,常用的刀具涂層辦法有化學氣相堆積法(CVD)、物理氣相堆積法(PVD)、等離子體化學氣相堆積法(PCVD)、熱噴涂法和離子束輔助堆積法(IBAD),其中以PVD和CVD應用為廣泛。
刀具的涂層技能現在現已成為進步刀具功能的關鍵技能。在涂層工藝方面,CVD依然是可轉位刀片的主要涂層工藝,在基體資料改進的基礎上,使CVD涂層刀具的耐磨性和韌性都得到進步。PVD相同取得了重大進展,開發了習慣高速切削、干切削、硬切削的耐熱性更好的涂層,如納米、多層結構等。等離子體化學氣相堆積法(PCVD)是將高頻微波導人含碳化物氣體發生高頻高能等離子,或者經過電極放電發生高能電子使氣體電離成為等離子體,由氣體中的活性碳原子或含碳基團在合金的外表堆積的一種涂層制備辦法。
非晶合金涂層的優勢
刀具涂層技能向物理涂層附加大功率等離子體方向開展;功能薄膜向著多元、多層膜的方向開展;并研討集硬度、化學穩定性、抗癢化性于一體且具有低內應力和高附著力的薄膜制備技能。圖(a)為多層涂層,其內層的TiCN與基體有較強的結合力和強度,中心的Al2O3,作為一種有用的熱屏障可答應有更高的切削速度,外層的TiCN保證抗前刀面和后刀面磨損才能,外一薄層金黃色的TiN使得容易辨別刀片的磨損狀態;圖(b)中納米涂層與傳統涂層比較,具有超硬度、超模量和高紅硬性效應,并且顯微硬度可超過40GPa;圖(c)納米復合結構涂層在強等離子體效果下,納米TiAlN晶體被鑲
刀具的涂層技能
嵌在非晶態的Si3N4體內,當AlTiN晶體尺度小于10nm時,位錯增殖源難于啟動,而非晶態相又可阻撓晶體位錯的遷移,即使在較高的應力下,位錯也不能穿越非晶態晶界。這種結構薄膜的硬度可以達到50GPa以上,并可堅持適當優異的韌性,且當溫度達到900—1100℃時,其顯微硬度仍可堅持在30GPa以上。
CVD和PVD涂層工藝技能和配備水平將得到進一步提升和工業化。復合、梯度、多層、納米多層、納米非晶態復合結構涂層及薄膜多元化、個性化、涂層、晶粒大小可控化等功能可定制的涂層(如高速干切削復合涂層技能)將逐漸工業化。另一方面,針對廢舊刀具回收利用的退涂技能、重涂技能也將由于綠色環保逐漸得到重視。此外,刀具軟涂層方向的自潤滑刀具作為可以完成干切削、準干式切削(MQL)的技能途徑之一現已受到重視。
非晶合金涂層刀具的前景
刀具的切削功能是刀具資料、幾何結構和涂層相互組合的成果,新資料、立異的結構設計和涂層可以促進刀具功能的改進。我國的刀具制作技能依然與先進國家存在很大的差距,研討刀具技能火燒眉毛,特別是基礎資料和結構立異,需要打破傳統思維,斗膽立異,尋求刀具技能的新出路。
“非晶中國大數據中心”信息標明:我國科學家在刀具上進行非晶態復合涂層技能攻關,并現已開端在企業試用,效果得到必定。未來,這將是非晶合金一個值得開發的高段應用市場。
在德國刀具制作商Horn公司每兩年舉辦一次的“技術開放日”上,媒體記者獲邀參觀了該公司坐落德國圖賓根市的硬質合金刀片毛坯生產線,親眼見證了用包含多種不同成分的混合粉料生產可轉位刀片的全進程。
Horn公司生產的各種刀具產品(如銑刀、車刀、拉刀、鉸刀等)廣泛采用了可轉位刀片。圖1中的旋轉展臺展示了該公司蕞新開發的一些立異產品,包含圓柄和削柄25A端面切槽體系、用于S100內冷卻車削刀片的新式刀夾等。
圖1
Horn公司在世界各地的刀具生產廠都能夠對燒結而成的刀片進行刃磨成形加工,但一切的刀片毛坯都來自坐落圖賓根的Horn
Hartstoffe硬質合金生產廠。制坯工藝的地一步是將不同配比的碳化物、結合劑資料(如鈷和鉭)以及后續加工所需的添加劑經精密稱量后制成混合粉料(圖2)。在冶金實驗室對質料進行的檢驗檢測后,對其進行攪拌混合,直至達到所要求的濃度,然后送至下一道工序,用三種成型辦法(軸向壓制成型、擠出成型或打針成型)之一進行毛坯成型加工。
圖2
如果刀片的形狀比較簡單,一般可采用如圖3所示的電動軸向壓坯機壓制成型。這種常用的刀片壓制辦法是將粉料放入模具之中,經過單向或雙向加壓,壓制出終究形狀。雖然該辦法比其他成型辦法更簡潔(如在燒結前無需參加添加劑),但卻不適合壓制較雜亂的刀片形狀,因為刀片脫模或許比較困難(或許完全無法脫模)。Horn公司這臺壓坯機采用了機器人自動裝料/卸件設備(見壓坯機左側)。
圖3
形狀較雜亂的刀片一般是在如圖4所示的活塞式擠出成型機上成型。該機推擠原資料經過一個模具而取得所需的形狀。值得注意的是,利用浮動芯軸銷,能夠在刀片毛坯內部構成內冷卻通道。在擠出成型機下部能夠看到,構成的生坯呈長條狀,還需要將其切成所需長度,經過清潔后再送去進行預燒結和燒結。
圖4
用于擠出成型的粉料中含有各種蠟和其他添加劑,這些添加劑可使加工出的刀片生坯具有延展性并呈橡膠狀(見圖5),這些長條形生坯還要切成所需尺度,并在后續工序中成型。隨后,這些添加劑將在預燒結工序中予以去除。
圖5
Horn公司還開發了一種用于大批量生產雜亂形狀刀片毛坯的金屬打針成型工藝(圖6所示為兩個裝在流道上的刀片的3D設計圖)。該工藝所用的打針成型機能夠設置超過5000種不同的工藝參數和變量。注入資料的體積范圍為0.2-20 cm3,打針速度為6m/sec,打針壓力蕞大可達2,200bar,模具重量范圍為150-200kg。
圖6
與打針成型機、壓坯機和擠出成型機相鄰的工區(見圖7)專門擔任為硬質合金刀片生產線制作東西和夾具。為此,Horn公司裝備了電火花加工機床、車床、三軸和五軸銑床、平面磨床和坐標磨床等機床,以及微噴砂體系、激光測量儀和三坐標測量機等設備。
圖7
用擠出成型機或打針成型機成型的刀片生坯經過清潔后,還必須進行預燒結。這道工序耗時2-4天,生坯要在氫氣氛爐中逐步加熱到850℃左右,使其中的各種添加劑受熱揮發,并使生坯預固化。刀片毛坯經過預燒結后,即可進入燒結階段(用軸向壓坯機成型的毛坯無需預燒結,可直接進行燒結)。經過在1,350℃-1,550℃的高溫文可達100bar的氣體壓力下進行燒結,刀片資料即可取得其終究的物理性能。在燒結進程中,資料部分呈液相狀況,碳化物以相同的方法重新排列,構成無孔隙的同質結構。此外,燒結后刀片的體積大約會比燒結前縮小20%-22%(見圖8)。整個燒結進程大約需要持續20小時才干完結。
圖8
經過一系列計量室測試和質量控制程序(包含掃描電鏡檢測、維氏硬度檢測、密度檢測、磁飽和度檢測等)之后,各批制品刀片毛坯將從硬質合金工廠運送到同樣坐落Horn工業園區的刀具生產廠,并在那里的專用磨床(見圖9)上刃磨出刀片的終究形狀。DMG/森精機公司專門為Horn公司提供的銑床渠道也能夠滿意其刀具刃磨的特定需求。Horn刀具生產廠的加工機床總數超過200臺,這些機床均按所加工的刀片類型分組。
圖9
圖10所示為Horn公司員工將刃磨好的刀片置于夾具上,準備對其進行清潔和噴砂處理。處理完畢后,再將這些夾具移至涂層爐中(Horn公司共有8臺涂層爐)進行PVD或CVD涂層。完結涂層工序后,制品刀片就能夠包裝發貨了。
圖10
圖11所示為Horn公司生產夾持刀片的刀體和刀夾的加工車間。
圖11
Horn公司從事各種刀片生產任務的許多員工都曾參加過企業自己的學徒訓練計劃。圖12中正在操作五軸加工中心的學徒已處于訓練的高及階段。在參與手動和數控加工之前,學徒們先要學習一些基本技能(如整理文檔)。