您好,歡迎來到易龍商務網!
發布時間:2020-11-12 02:16  
【廣告】





304和304L不銹鋼_316L和316不銹鋼之區別
304
18Cr-8Ni
作為一種用途廣泛的鋼,具有良好的耐蝕性、耐熱性,低溫強度和機械特性;沖壓、彎曲等熱加工性好,無熱處理硬化現象(無磁性,便用溫茺-196℃~800℃)。
家庭用品(1、2類餐具、櫥柜、室內管線、熱水器、鍋爐、浴缸),汽車配件(風擋雨刷、消聲器、模制品),醫用器具,建材,化學,食品工業,農業,船舶部件。
304L
18Cr-8Ni-低碳
作為低C的304鋼,在一般狀態下,其耐蝕性與304剛相似,但在焊接后或者消除應力后,其抗晶界腐蝕能力良好;在未進行熱處理的情況下,亦能保持良好的耐蝕性,使用溫度-196℃~800℃。
應用于抗晶界腐蝕性要求高的化學、煤炭、石油產業的野外露天機器,建材耐熱零件及熱處理有困難的零件。
316
18Cr-12Ni-2.5Mo
因添加Mo,故其耐蝕性、耐大氣腐蝕性和高溫強度特別好,可在苛酷的條件下使用;加工硬化性優(無磁性)。
海水里用設備、化學、染料、造紙、草酸、肥料等生產設備;照像、食品工業、沿海地區設施、繩索、CD桿、螺栓、螺母。
316L
18Cr-12Ni-2.5Mo低碳
作為316鋼種的低C系列,除與316鋼有相同的特性外,其抗晶界腐蝕性優。
316鋼的用途中,對抗晶界腐蝕性有特別要求的產品。


AIM工藝簡介及AIM生產設備的發展現狀
MIM和CIM是粉末注射成形工藝的兩大分支。其中MIM是發展最早也最成熟的一個分支,被稱為21世界最熱門的零部件成形技術,它也的確沒有辜負這樣一個榮譽,其產業不斷發展和壯大,并擁有了專門的金屬注射成形生產設備。若材料難以切削加工,諸如工具鋼、鈦、鎳合金或不銹鋼,對于MIM最終成型來說,是最有利的,MIM工藝可以一次性成型復雜的幾何形狀特征。現在粉末注射成型工藝一出現第三大分支:AIM,即鋁合金注射成型。近年來,隨著金屬注射成形工藝的不斷成熟和普及,人們也越來越關注鋁合金這種具有優異功能的特殊復合金屬,因鋁合金種類繁多,性質差異較大,表面極易被氧化的特點,其在注射成形方面與普通金屬或合金要求是不同的,于是才會出現專門的AIM——鋁合金注射成形。
任何一個工藝要想發展,形成一種產業,必須要通過生產設備的改進和升級來為企業提高生產效率,AIM也不例外,zui初它是沒有專用的設備的,傳統粉末冶金和注塑行業通用生產設備以及金屬注射成形專用設備的都曾被用于該工藝中。結合力及再涂性能好:達克羅涂層與金屬基體有良好的結合力,而且與其他附加涂層有強烈的粘著性,處理后的零件易于噴涂著色,與有機涂層的結合力甚至超過了磷化膜。但是它有其獨特的原料特點,那些非專用生產設備都無法很好滿足其正常生產需要,即使勉強可以使用制品的質量也大打折扣。
AIM生產設備(主要是混煉造粒設備和注射設備)的研究是近幾年才開始的,因為鋁合金注射成形技術是非常先進的一門技術,國內對其研究也是剛剛開始,目前南京科技大學對此領域研究較早較多并已經取得一定研究成果,在領域的水平可以達到世界前三。金屬喂料的生產是金屬注射成形行業不可或缺的組成部分,因為工藝技術要求注射原料必須為一定大小的均勻顆粒,而不能直接使用粉末。由于鋁合金粉末的摩擦系數比普通金屬粉末和陶瓷粉末都要小,因此就混煉設備和注射設備來講,原則上是可以與其共用的。
隨著AIM企業對生產效率和設備自動化,加工連續化程度以及設備性能等要求的提高,專業的鋁合金注射成形混煉機、造粒機及注射機的研究開始被眾多機械設備制造商提上日程。
目前國內已有少數幾家機械設備制造商通過與高等院校合作的方式,在AIM專用生產設備的研發生產方面取得了初步的成效,并在一些企業開始試用,其功能和特性還有待在以后的生產實踐中不斷摸索和改進,相信隨著科技不斷進步,這些生產設備也會朝著智能化、環保化、自動化發展。粘結劑的主要作用是充當粘結金屬粉末顆粒流動的載體以及成型后保持工件形狀。


金屬粉末增塑擠壓成型與注射成形工藝比較
粉末冶金技術發展到今天已經有了不少的分支和不同的工藝,在這其中zui具有代表性的兩種工藝非增塑擠壓成型和注射成形莫屬了,雖然同屬于粉末冶金,但是它們又有很多不同,今天就讓小編帶大家一起來了解一下吧。
先來看看金屬粉末增塑擠壓成形工藝,這是一種在金屬粉末包套擠壓等工藝的基礎上發展而來的,可以在較低的溫度下對具有優良流動性的銅、鎢、硬質合金、高熔點金屬間化合物以及陶瓷材料進行擠壓成形的新工藝。目前該工藝已經有了專用的連續擠壓設備。金屬粉末注射成型技術工藝與傳統工藝相比,具有精度高、組織均勻、性能優異,生產成本低等特點,其產品廣泛應用于電子信息工程、生物醫用器械、辦公設備、汽車、機械、五金、體育器械、鐘表業、兵工及航空航天等工業領域。該工藝過程使用的物料是添加了一定量增速劑的具有優良流動性的金屬粉末。利用該工藝生產的坯件,在經過干燥、燒結之后就可以成為最終成品了。
再來看一下另外一種新型的金屬零部件成形工藝—金屬注射成形。四、豪克能技術豪克能技術:利用沖擊能和激發能的復合能對金屬零件進行加工,從而獲得鏡面零件。它是將傳統的粉末冶金和現代塑料注塑技術相結合并依托于粘結劑配方研發和喂料生產技術的一種近凈成形工藝。它是一種發展歷史久遠但發展速度緩慢的成形工藝,該工藝的基本流程就是將金屬粉末和粘結劑的混合物在一定的溫度和壓力條件xia注入特定的模腔中得到接近最終產品尺寸和形狀的坯件,再對坯件進行脫粘、燒結得到具備一定機械性能的最終成品的過程。
通過以上的描述可以看出,粉末增塑擠壓成形與注射成形有很多相同的優點,所以近幾年這兩種工藝都得到了迅猛發展,兩者共同的優點總結一下有四點:近凈成形,都可以一次成形最接近制品最終形狀的坯件;利用傳統的鑄造、機加工等防范難以生產的形狀的金屬制品,尤其是小型復雜零件和細長零件的成形中占有很大優勢;可適用的材料范圍都相當廣泛,一些用常規辦法不好制備成品的材料都可以采用此兩種方法;該兩種方法可以作為新材料及其產品的新的研發方法。馬氏體轉變速度極快,轉變時體積產生膨脹,在鋼絲內部形成很大的內應力,所以淬火后的鋼絲需要及時回火,防止應力開裂。
兩者一個顯著共同點是都要使用粘結劑。從粘結劑的選用及配方上來看,兩者采用的粘結劑都可以歸為三大體系,蠟基、jia基纖維素基和塑基,用量上也差不多,都在在8%~20%的質量比范圍。從工藝上來看,都要在坯件成形以后進行粘結劑的徹底脫除。
但是兩者也有很明顯的不同,在原料上,增塑擠壓成形使用的金屬粉末粒度變化區間比較大,從幾微米到幾百微米都可以使用;而金屬注射成形對金屬粉末的要求比較高,粉末的粒度一般在0.5-20微米之間,對粉末制備方法和粉末形狀有著更高的要求,因此成形后的制品更致密,燒結時收縮率小,尺寸精度更高。一、陽極氧化陽極氧化:主要是鋁的陽極氧化,是利用電化學原理,在鋁和鋁合金的表面生成一層Al2O3(氧化鋁)膜。
如果要說兩者的差異的話,成形設備和物料受力的的不同是其另外一個顯著的區別,增塑擠壓成形采用的是專用螺桿擠壓成形機,物料處于兩向壓縮和一向擠出拉伸的變形,其中的擠壓力一般不會超過300Mpa;而注射成形采用的注射成形機,在成形過程中物料受到的是三向壓應力,其變形是三向力的壓縮變形。4)外部加熱汽化系統,改變了過去液體滴酸的干擾,提升了脫脂效率。
通過兩者共同點和不同點的比較,我們認識到,兩者都是當今粉末冶金技術新的發展方向,都可以在成形難加工材料的小尺寸復雜形狀制品方面發揮優勢,如果在精密度要求不是特別高的情況下可以采用增塑擠壓成形工藝以降低生產成本,而精密度要求高的制品的成形則只能通過對粉末粒度要求嚴格的金屬粉末注射成形來實現。達克羅的表面硬度不高、耐磨性不好,而且達克羅涂層的制品不適合與銅、鎂、鎳和不銹鋼的零部件接觸與連接,因為它們會產生接觸性腐蝕,影響制品表面質量及防腐性能。


金屬粉末充模模擬機理和顆粒模擬的使用
對于多相填充流,人們發現可以因為剪切力作用,或是顆粒間的相互作用而形成些獨特的結構。特性使得這一現象尤為突出。這就帶來了一些問題,比如:流體是否均勻,流體是否是多相的且每個組分是否都起著獨立的作用來影響整個流體的流動性。粉末冶金生胚強度的概念粉末冶金生坯強度是指冷壓的粉末壓坯的機械強度。通過觀察流道橫截面上的流體可以發現許多有趣的現象。和中顯示的是橫截面的放大圖,顯示出了相的分離以及年輪一樣的結構。上面圖片中的白色條紋是相分離的一種表征,那里是一些粘結劑中的低熔點組分。在這樣的地方很容易產生裂紋。這種結構明顯表明流體是多相的,甚至可能是類固體的。所以實際上的MIM喂料熔體是非均質的流體,其運動方式和均質流體存在著差異。
在粉末-粘結劑兩相體系中,粉末顆粒和粘結劑之間存在著強烈的相互作用,因此顆粒附近粘結劑的運動將受到一定的限制。在這個模型里,將具有不規則形狀的粉末簡化為規則球形的顆粒,每個顆粒周圍包覆著一層粘結劑,這層粘結劑隨顆粒一起運動,即將其看成一個復合單元。主要集中在深圳、上海、江蘇、浙江等沿海城市,據不完全統計有兩百多家。粘結劑的厚度假定是常數,以此確保系統質量的恒定。盡管這些復合單元的周圍還有自由粘結劑的存在,且其粘性制約了粉末顆粒的運動,還是可將復合單元看成是不受外圍粘結劑介質的影響。
修正顆粒模型顆粒模型較為充分地考慮了MIM喂料的獨特性,可以描述粉末的運動情況,因此這個模型在簡單計算每個粉末顆粒的實際運動情況方面較為精準,但對于實際的三維問題,顆粒模型的微觀分析需要大量的單元,且容易造成計算的發散。很難將其應用到諸如粉末等微細粉末的分析。其生產工藝流程為:電鍍工藝過程一般包括電鍍前預處理﹐電鍍及鍍后處理(鈍化處理)三個階段。所以必須對已有的顆粒模型進行一定的修正。展示了通過這種顆粒模型模擬出來的MIM喂料充模的情況。從中可以較清楚地看出密度分布的不均勻性。
結論由于MIM喂料在模腔中的流動可以看成是固-液兩相流動,所以采用傳統的連續介質模型來進行流動模擬存在較大的偏差。很多研究表明,MIM喂料在充模過程中將發生粉末和粘結劑分離的現象。鐵素體含碳量很低,其性能接近純鐵,是一種塑性、韌性高和強度、硬度低的組織。通過這種方法可以直接考察粉末特性(粒度、粒徑分布、密度和形狀等)對流動過程的影響。從而可以監視流動過程中粉末的運動、聚集以及密度變化分布情況和兩相分離等特殊現象。為了簡化三維問題中的計算,還在基于修正顆粒流體動力學的基礎上對該模型進行了修正。

