您好,歡迎來到易龍商務網!
發布時間:2020-12-06 12:23  
【廣告】





“RTO可通過兩種方式提高VOCs的凈化效率,一是延長VOCs的燃燒時間,但會降低熱效率;二是增加蓄熱室數量,理論上講,蓄熱室數量越多,凈化效率越高。公司生產的旋轉式RTO爐體均勻分為12個蓄熱室,根據功能分為5個放熱區、5個蓄熱區、1個死區和1個吹掃區,蓄熱室的數量遠高于兩床式和三床式,凈化效率顯著提升。”
RTO爐體的表面熱量損失和余熱回用能力是影響其熱效率的兩個重要因素。“經測試,旋轉式RTO熱效率為97%,比兩床式、三床式分別提高7個和2個百分點。以廢氣處理量均為30000Nm3/h風量規模的情況為例,兩床式、三床式和旋轉式RTO表面積分別為95m2、145m2和86m2,旋轉式RTO表面積比兩床式、三床式分別降低9.5%和41%。這表明,旋轉式RTO有著更小的比表面積,從爐體結構角度看熱量損失較小。以單臺3萬Nm3/h風量旋轉式RTO為例,通過余熱回用技術,每天平均可為用戶節約電費1000余元;每年平均可消減工業VOCs達300余t。
沸石轉輪吸附同蓄熱式焚燒技術的組合工藝,凈化系統主要由三級干式過濾裝置、沸石轉輪濃縮吸附裝置、RT0、風機、換熱器、PLC自動化控制系統組成。
該組合技術通過沸石轉輪的吸附濃縮使大風量、低濃度有機廢氣濃縮為小風量、高濃度濃縮氣體,高濃度濃縮氣再經RTO高溫燃燒分解為(CO2和H2O等無機成分。
沸石轉輪濃縮裝置是利用吸附-脫附-濃縮三項連續變溫的吸附、脫附程序,通過轉輪的旋轉,在轉輪(被分割成吸附區、脫附區、冷卻區)上同時完成VOCs的吸附、脫附再生。
組合技術工藝過程:經三級干式過濾裝置去除粉塵、顆粒物后的有機廢氣流過濃縮轉輪時,其中的有機物在轉輪吸附區域會被吸附下來,經過吸附凈化后的廢氣(約占處理風量的85% ~ 95% )排放到大氣中,一小部分廢氣(約占處理風量的5% ~ 15% )對轉輪冷卻區降溫后經換熱器被加熱到180 ~ 220oC的脫附溫度后,流人脫附區,脫附區有機物從吸附劑一沸石上脫離到加熱的氣流中,轉輪得以再生,脫附后的高濃度VOCs被送人RT0高溫焚燒,反應后的高溫煙氣進人規整蜂窩陶瓷蓄熱體,95% 的熱量被蓄熱體吸收并“儲存”起來,溫度降低到接近RTO人口溫度,通常不超過50oC。蓄熱體溫度升高后,通過切換閥或旋轉裝置切換氣流流向,分別進行蓄熱和放熱,實現熱量的有效回收利用。
RTO正常運行時,廢氣的進氣和排氣通過閥門切換來完成。
個工作周期中,廢氣自下而上經A蓄熱室升溫,然后進入燃燒室氧化放熱;氧化放熱結束后,自上而下通過B蓄熱室,與蓄熱室內的填料進行換熱,將熱量傳遞給B蓄熱室,再經過工藝管路進入煙囪排放;此時C蓄熱室處于吹掃狀態,用吹掃風機將蓄熱室(含集氣室)中的滯留廢氣吹入燃燒室氧化處理,防止因蓄熱室的切換過程影響廢氣處理效率。
第2個工作周期中,A蓄熱室處于吹掃狀態,廢氣自下而上進入B蓄熱室,與已吸收熱量的填料進行換熱后,進入燃燒室氧化放熱,再自上而下通過C蓄熱室,并將熱量傳遞給C蓄熱室后,進入煙囪。
第3個工作周期中,B蓄熱室處于吹掃狀態,廢氣由C蓄熱室進入,氧化放熱后,通過A蓄熱室進入煙囪,完成了RTO裝置運行的1個大周期,如此交替運行。當煙煤在隔絕空氣條件下加熱到950~1050℃,經過干燥、熱解干餾、熔融、黏結、固化、收縮等階段,終得到焦炭,這個過程稱為煉焦。
煉焦過程產生的荒煤氣經過回收和精制可以得到多種芳香烴和雜環化合物等基本化學原料,同時產生的焦爐煤氣是高熱值燃料,可以用來發電或供應城市煤氣。
因此,本項目以能源利用為目的,采用焦爐煤氣代替輔助燃料,可以節約成本,提高焦爐煤氣利用率,同時能夠滿足RTO裝置正常運行時的燃料需求。該裝置主要由燃燒室、蓄熱室(含集氣室)及切換閥門組成。
蓄熱氧化技術RTO(RegenerativeThermal Oxidizer,簡稱RTO)把有機廢氣加熱到760℃以上,使廢氣中的揮發性有機物(VOCs,Volatile Organic Compounds)在燃燒室中氧化分解成CO2和H2O。氧化產生的高溫氣體流經的陶瓷蓄熱體,使陶瓷體升溫而“蓄熱”,下個過程是廢氣從已經“蓄熱”的陶瓷經過,將陶瓷的熱量傳遞給廢氣,有機廢氣通過陶瓷作為換熱器載體,反復進行熱交換,從而節省廢氣升溫的燃料消耗,降低運行成本,熱回收達95%。在中高濃度的條件下,RTO可以對外輸出余熱,通過蒸汽、熱風、熱水等形式加以利用,在滿足環保目標的同時,實現經濟效益。