您好,歡迎來到易龍商務網!
發布時間:2020-12-28 16:18  
【廣告】





金屬學基礎
鐵碳合金的基本組織
①奧氏體:碳溶于r-Fe中的間隙式固溶體稱為奧氏體,常用A表示。因為面心立方晶格的r-Fe總的間隙量雖比a-Fe的小,但空隙半徑比較大,所以能溶較多的碳。碳在r-Fe中的溶解度隨溫度升高而增加,在727度時為0.77%,在1148度時達到峰值2.11%。因為面心立方晶格的r-Fe總的間隙量雖比a-Fe的小,但空隙半徑比較大,所以能溶較多的碳。
奧氏體塑性很好,強度和硬度也比鐵素體高。
②鐵素體:碳溶于a-Fe中的間隙式固溶體稱為鐵素體,常用F表示。因為體心立方晶格的a-Fe總的間隙量雖大,但是間隙半徑卻很小,所以碳在a-Fe中的溶解度很小,室溫下不超過0.005%,隨著溫度升高,溶解度略有增加,在727度時達到峰值,也僅有0.0218%。MIM的發展進程20世紀70年代,美國學者Wiech首先開發出一種對金屬粉末進行注射成形的粉末冶金工藝。
鐵素體含碳量很低,其性能接近純鐵,是一種塑性、韌性高和強度、硬度低的組織。
③珠光體:鐵素體和滲碳體組成的機械混合物叫做珠光體,常用P表示。珠光體的平均含碳量為0.77%。其性能介于鐵素體和滲碳體之間。一般情況下,珠光體中鐵素體和滲碳體呈片狀交替分布,稱為片狀珠光體。通過熱處理可以使滲碳體呈顆粒狀分布在鐵素體基體上,叫做球狀珠光體或粒狀珠光體。很好的耐蝕性能:達克羅膜層的厚度僅為4-8μm,但其防銹效果卻是傳統電鍍鋅、熱鍍鋅或涂料涂覆法的7-10倍以上。
④滲碳體:滲碳體是鐵與碳的化合物,常用Fe3C表示。滲碳體的含碳量為6.69%,熔點約為1227度,晶體結構復雜,硬度很高,脆性極大,幾乎沒有塑性。
一般來說,在鐵碳合金中,滲碳體越多,合金就越硬,越脆。
⑤馬氏體:鋼加熱到一定溫度(形成奧氏體)后經迅速冷卻(淬火),得到的能使鋼變硬、增強的一種淬火組織,常用M表示,馬氏體是體心正方結構。
馬氏體轉變速度極快,轉變時體積產生膨脹,在鋼絲內部形成很大的內應力,所以淬火后的鋼絲需要及時回火,防止應力開裂。
什么是不銹鋼
不銹鋼是在空氣中或化學腐蝕介質中可以耐腐蝕的一種高合金鋼,不銹鋼是具備雅觀的外表和耐腐蝕性能好、不用經過鍍色等表面處理工藝而發揮不銹鋼所固有的外表性能、運用于多方面的鋼鐵的一種,通常稱為不銹鋼。
代表性能的有13鉻鋼,18-鉻鎳鋼等高合金鋼。
從金相學角度分析,因為不銹鋼含有鉻而使外表形成很薄的鉻膜,這個膜隔分開與鋼內侵入的氧氣起耐腐蝕的作用。為了維持不銹鋼所固有的耐腐蝕性,鋼必需含有12%以上的鉻。
不銹鋼最實用于醫院或其它衛生條件至關重要的領域,尤其是在經過二次加工拋光以后的不銹鋼效果更佳。通常條件下腐蝕環境要求光滑的外表是因為外表光滑不容易積垢。污垢的沉積會使不銹鋼生銹甚至造成腐蝕。
食品加工、餐飲、釀造和化工,便于清洗,有時還要運用化學清洗劑,不易滋長細菌。不銹鋼在這方面的性能與玻璃和陶瓷可以媲美!


MIM如何選擇粘結劑
粘結劑是MIM技術的核心,MIM與常規粉末冶金方法相比的一個重要差異即粘結劑含量高。粘結劑的主要作用是充當粘結金屬粉末顆粒流動的載體以及成型后保持工件形狀。
MIM用粘結劑應滿足如下要求:
與粉末接觸角小,粘附力強且不與粉末反應;射出溫度范圍內粘度變化不大,但冷卻時粘度變化速度快不易粘模;用量少,用較少的粘結劑能使混合料產生較好的流變性;
粘結劑的選擇十分關鍵,若粘結劑選擇不當可能產生以下缺陷:
粘結劑是怎么分類的?
一個實用的粘結劑一般由幾種組元組成,每種組元有各自獨特的功能,按照功能可以分為主要粘結劑、次要粘結劑和添加劑這幾種。根據粘結劑體系中主要粘結劑組元及其性質可以把粘結劑體系分為熱塑性粘結劑、熱固性粘結劑、凝膠體系和水溶性粘結劑以及特殊體系等。化學拋光其長處是加工設備投資少,龐雜件能拋,速度快,防腐性好。
其中,熱塑性粘結劑應用最廣泛,分為石蠟基粘結劑、油基粘結劑、聚合物基粘結劑等。下表列出了幾種主要MIM粘結劑體系的優缺點 :
熱塑性粘結劑一般由高分子聚合物、低分子物質以及必要的添加劑組成(石蠟基粘結劑、油基粘結劑等分類是根據低分子物質來區分的)。各組成部分作用如下:
高分子聚合物:黏度高,強度高,在注射后及脫脂過程中保持坯塊形狀低分子物質:粘度低,流動性好,脫脂過程中能在較低溫度下首先被脫除,在坯塊中留下連通空隙,有利于后期快速熱熔脂的進行添加劑:改善應力、降低粘度、增加潤濕性或潤滑性等
粉末冶金MIM工藝相比傳統精鑄工藝的優勢
MIM使用的原料粉末粒度直徑為2—15urn,而傳統粉末冶金(PM)的原料粉末粒度為50—100urn。MIM工藝的成品密度高,原因是使用微細粉末。MIM產品形狀自由度是PM所不能達到的。
傳統的精密鑄造(IC)工藝作為一種制作復雜形狀產品極有效的技術,近年使用陶心輔助可以完成狹縫、深孔穴的產品,但礙于陶心的強度以及鑄液的流動性限制,該工藝仍有某些技術上的難題。一般而言,此工藝制造大、中型零件較為合適,而小型復雜零件則MIM工藝較為合適,而且IC工藝材質受到一定限制。采用達克羅工藝處理的標準件、管接件經耐鹽霧試驗1200h以上未出現紅銹。
壓鑄工藝適用于鋁和鋅合金等低熔點、鑄流性好的材料,而MIM工藝適合各種材質。
精密鍛造可以成型復雜零件,但不能成型三維復雜的小型零件,其產品的精度低,產品有局限。
傳統機械加工法:近來靠自動化和數控提升加工能力,在效率和精度上有很大的進展,但是基本的程序上仍脫不開逐步加工車、刨、銑、磨、鉆、拋等完成零件形狀的方式,機械加工的方法精度和復雜度遠優于其他方法,但是因為材料的有效利用率低,且形狀的完成受限于設備與刀具,有些零件無法用機械加工完成。相反,MIM可以有效利用材料,形狀自由度不受限制。對于小型、復雜、高難度形狀的精密零件的制造,MIM工藝比較機械式加工而言,其成本較低且效率高,具有競爭力。產品復雜性:MIM工藝最適合制造幾何形狀復雜的、在切削加工中需要變換很多次加工工位的多軸零件、多基準零件。

