您好,歡迎來到易龍商務網!
發布時間:2020-12-21 18:46  
【廣告】






刀具的選擇和切削用量的確定是數控加工工藝中的重要內容,它不僅影響數控機床的加工效率,而且直接影響加工質量。CAD/ CAM技術的發展,使得在數控加工中直接利用CAD的設計數據成為可能。特別是微機與數控機床的聯接,使得設計、工藝規劃及編程的整個過程全部在計算機上完成成為可能。
現在,許多CAD/ CAM軟件包括提供自動編程功能,這些軟件一般是在編程界面中提示工藝規劃的有關問題,比如,刀具選擇、加工路徑、切削用量設定等,編程人員只要設置了有關的參數,就可以自動生成NC程序并傳輸至數控機床完成加工。因此,數控加工中的刀具選擇和切削用量確定是在人機交互狀態下完成的,這與普通機床加工形成鮮明的對比,同時也要求編程人員必須掌握刀具選擇和切削用量確定的基本原則,在編程時充分考慮數控加工的特點。本文對數控編程中必須面對的刀具選擇和切削用量確定問題進行了分析。
一、數控加工常用刀具的種類及性能
數控加工刀具必須適應數控機床高速、和自動化程度高的特點,一般應包括通用刀具、通用連接刀柄。刀柄要聯接刀具并裝在機床動力頭上,因此已逐漸標準化和系列化。數控刀具的分類有多種方法。根據刀具結構可分為:①整體式;②鑲嵌式。根據制造刀具所用的材料可分為:①高速鋼 刃具;②硬質合金刀具;③金剛石刀具;④陶瓷刃具等。從切削工藝上可分為:①銑削刀具;②鉆削刀具;③鏜削刀具;④車削刀具等。
刀具材料應具備的性能:
(1)高硬度刀具材料的硬度應高于工件的硬度
(2)足夠的韌性承受切削力、振動和沖擊;
(3)高耐磨性耐磨性是材料抵抗磨損的能力;
(4)高耐熱性刀具材料在高溫下保持硬度、耐磨性、強度和韌性的能力;
(5)良好的工藝性
二、數控加工刀具的選擇
刀具的選擇應根據機床的加工能力、工件材料的性能、加工工序、切削用量以及其它相關因素正確選用刀具及刀柄。刀具選擇總的原則是:安裝調整方便,剛性好,耐用度和精度高。在滿足加工要求的前提下,盡量選擇較短的刀柄,以提高刀具加工的剛性。
選取刀具時,要使刀具的尺寸與被加工工件的表面尺寸相適應。生產中,平面輪廓的加工,常采用立銑刀;銑削平面時,應選鑲硬質合金刀片面銑刀;加工毛坯表面或粗加工孔時,可選取鑲硬質合金刀片的銑刀;對一些立體型面和變斜角輪廓外形的加工,常采用球頭銑刀、環形銑刀、錐形銑刀和梯形銑刀等。在進行曲面加工時,應選用球頭刀具,并且球頭刀具半徑應小于曲面的曲率半徑。由于球頭刀具的端部切削速度為零,因此,為保證加工精度,切削行距一般取得很密,而平頭刃具在表面加工質量和切削效率方面都優于球頭刀,因此,只要在保證精度的前提下,無論是曲面的粗加工還是精加工,都應優先選擇平。
在數控加工中,由于刀具的刃磨、測量和更換多為人工手動進行,占用輔助時間較長,因此,必須合理安排刀具的排列順序。一般應遵循以下原則:①盡量減少刀具數量;②一把刀具裝夾后,應完成其所能進行的所有加工部位;③粗精加工的刀具應分開使用,即使是相同尺寸規格的刀具;④先面后孔;⑤先進行曲面精加工,后進行二維輪廓精加工;⑥在可能的情況下,應盡可能利用數控機床的自動換刀功能,以提高生產效率等。
三、數控加工切削用量的確定
合理選擇切削用量的原則是,粗加工時,一般以提高生產率為主。半精加工和精加工時,應在保證加工質量的前提下,兼顧切削效率、經濟性和加工成本。具體數值應根據機床性能、切削用量手冊,并結合經驗面定。同時,使主軸轉速、切削深度及進給速度三者相互適應,以形成切削用量。
(1)背吃刀量 在機床,工件和刀具的剛度允許的情況下,應盡可能使背吃刀量等于加工余量,這樣可以減少走刀次數,提高生產效率。為了保證零件的加工精度和表面粗糙度,應留少量精加工余量,一般留0.2 -0.5mm。
(2)切削寬度L一般L與刀具直徑d成正比,與切削深度成反比。數控加工中,一般L的取值范圍為:L= (0.6- 0.9)d。
(3)切削速度切削速度也是提高生產率的一個措施,但切削速度與刀具耐用度的關系比較密切。隨著切削速度的增大,刀具耐用度急劇下降,故切削速度的選擇主要取決于刀具耐用度。另外,切削速度與加工材料也有很大關系,例如用立銑刀銑削45鋼時,切削速度可采用26m/ mi左右:而用同樣的立銑刀銑削鋁合金時,切削速度可選129m/ mi以上。
(4)主軸轉速n(r/mi)主軸轉速一般根據切削速度來選定。計算公式為:n= 1000/ d,式中d為刀具直徑(mm)。數控機床的控制面板上一般配有主軸轉速修調(倍率)開關,可在加工過程中對主軸轉速進行倍率調整。
(5)進給速度F進給速度應根據零件的加工精度和表面粗糙度要求以及刀具和工件材料來選擇。
確定進給速度的原則:
一、當工件的質量要求能夠保證時,為提高生產效率,可選擇較高的進給速度。一般在100 - 200mm/ mi范圍內選取。
第二、在刀斷、加工深孔或用高速鋼具加工時,宜選擇較低的進給速度,一般在20- 50mm/ mi范圍內選取。
第三、當加工精度、表面粗糙度要求高時,進給速度應選小些,一般在20- 5Omm/ min范圍內選取。
在數控加工過程中,進給速度也可通過機床控制面板上的進給倍率修調開關進行人工調整,但是進給速度要受到設備剛度和進給系統性能等的限制。
隨著數控機床在生產實際中的廣泛應用,數控編程已經成為數控加工中的關鍵問題之一。在數控程序的編制過程中,要在人機交互狀態下即時選擇刀具和確定切削用量。因此,編程人員必須熟悉刀具的選擇方法和切削用量的確定原則,從而保證零件的加工質量和加工效率,充分發揮數控機床的優點。
加工刀紋
產品和機床
有著人造板機械行業技能“珠峰”美譽的連續壓機的重要零件熱壓板,其韌硬資料耐熱合金鋼硬度要求400HB以上;具有7 000mm×2 650mm(長×寬)的大平面標準和橫向平面度0.015mm/全長一級平板、縱向平面度0.1mm/全長三級平板、厚度公役±0.03mm、表面粗糙度值Ra=0.8μm以下的要求。因而成為規劃中的重中之重,工藝中的難中之難。如圖1所示。
加工重任落在了“精密、大型、數控”機床之一沈陽機床12m數控龍門銑床上,啟用二年的技改項目12m數控龍門銑床已過磨合期進入精度”平板特點的熱壓板是對機床精度的一次實例查驗,但即便在試切加工之初,問題就頻出,加工后的平面有正紋、網紋、反紋、接刀和橢圓內凹等表面質量差、平面度精度不合格等現象,所以課題攻關在所難免。
2
機床精度成因
12m數控龍門銑床精度由4根軸(即線軌X、橫梁Y、滑枕Z和主軸S)及互相間的幾何公役構成。
(1)機床的XY平面由兩根直線導軌組成,因為能夠選用的水平儀和準直儀并根底可調,其XY平面的水平度和X軸的直線度是可調整項,依托調整能夠確保達到較高的精度,一起它也是其他平面和軸的基準,為重要。是熱壓板縱向平面度0.1mm的確保。
(2)機床的橫梁Y軸,一是要求與XY平面平行,因為橫梁自重下撓和預留磨損,Y軸被規劃成單波中高,所以這項精度是不行調整項,依托Y軸的中高操控和立柱的等高加工確保平行,是熱壓板橫向平面度0.015mm和厚度±0.03mm的確保;二是與X軸的筆直,此項是可調整項,經過調整來確保精度。
(3)機床的滑枕Z軸,有著與XY平面雙向筆直的要求,即Z軸在XZ平面內與XY平面的筆直度,此項為不行調整項,依托加工確保精度,Z軸在YZ軸平面內與XY平面的筆直度是可調整項,依托調整來確保精度。
(4)機床的主軸S軸,也有著與Z軸雙向平行的要求,即S軸在XZ平面與Z軸平行,S軸在YZ平面內與Z軸平行,此兩項為不行調整項,有必要依托加工確保。
從以上剖析可出看出:①工件容易實現精度的定位是XY平面和X軸,也是機床悉數精度的基準。②因為不行調整項依托機床制造進程加工確保,所以機床是否的要點是對不行調整項精度的進程檢測和鏟刮研修,杜絕終究插補修整的貓膩。③要點操控Y軸微量(<0.02mm)中高單波型線。④在S軸和Z軸的調整次序上,單從大面加工和接刀來說,在調整與XY平面的雙向筆直度時以S軸為優先。⑤充沛依托可調整項的可調整,經過檢測和觀察加工刀紋,彌補進步機床精度。
3
從刀紋窺破機床精度
因為機床的在時效中不知不覺失掉,在熱壓板加工之初,在大平面構成了一些較為典型的刀紋和接刀亂象,經過觀察從中能夠剖析機床精度問題和成因。如圖2所示。
(1)正紋。由刀盤正傾引起,正紋加工的長處是刀紋一致漂亮、后不拖刀單次切削、刀具磨損少,缺陷是因為刀盤歪斜,刀路中心構成橢圓內凹。
(2)反紋。由刀盤負傾引起,反紋加工的缺陷是后拖刀兩次切削、刀具磨損大,同樣因為刀盤歪斜,刀路中心構成橢圓內凹。
(3)網紋。由刀盤傾角為0時引起,是真實的平面加工,但缺陷是網紋較亂不漂亮,也有拖刀磨損。
(4)接刀。在粗加工時能夠是切削反彈、熱變形等要素引起,但在精加工時一定也有刀盤的歪斜原因,構成臺階型接刀,嚴重時破壞了平面度、表面粗糙度和漂亮度。而刀盤歪斜實際上是由S軸與XY平面雙向筆直度引起,那么是哪些終究要素導致的呢?而如何只構成有利的正紋減磨、微接刀和小凹面,是咱們觀察和剖析刀紋后要揣度和解決進步機床精度問題的所在。
從圖2能夠看出刀紋從正紋、網紋及反紋的改變,其實暗示出Y軸的爬高落低的曲折走向,在對Y軸的準直丈量中發現如圖的折線改變,Y軸直線差錯并不大于0.03mm,但其折線特征使刀盤歪斜卻是刀紋構成亂紋的原因,因為Y軸的直線度是不行調整項,有必要經過機械批改,一起可微量加大刀盤在YZ平面內的正傾角,確保全長構成的正刀紋。
從圖3咱們能夠看出接刀痕是臺階型,其實暗示由刀盤歪斜即S軸在XZ平面內與XY平面不筆直引起的,在甩表丈量中也證實了此項差錯的存在,而刀盤越大,臺階越大。因為此項精度也是死項,有必要經過機械批改,因為無法悉數消滅筆直度差錯,微量加大刀盤在YZ平面內的正傾角,一是構成一個方向的正紋;二是構成相鄰兩內凹橢圓,確保為微量相交型手感光滑的接刀,也能夠看出,如果相鄰刀路重合越多,接刀高度就越小,在1/2重合時蕞小。
4
效果和定論
(1)一個合格的技師應該熟悉和掌握機床精度的成因和各軸的精度凹凸次序,并能在加工刀紋和接刀痕中判斷出影響機床精度的要素所在,經過反饋保護機床至狀態,作出習慣機床精度的定位和走刀方向挑選,進步產品加工質量。
(2)在熱壓板大平面加工的實例中,首先要檢測和操控Y軸直線度和曲線類型,確保其中高不大于0.02mm的單波弧線,確保主軸S在XZ平面內與XY平面的筆直度在0.008mm之內,并適當調整主軸S在YZ平面內與XY平面的筆直度,有意使其微量正傾,結合鎖定Z軸、Y軸向進刀單向、相鄰刀路重合足夠大等辦法,從而構成質量較高的正紋和微量相交型平滑接刀痕的XY平面加工。
(3)裝上角銑頭,首先留意其雙向筆直也是不行調整項。然后同樣能夠推理在XZ和YZ平面加工中機床精度與刀紋和接刀的關系,舉一反三,快速找到問題和進步產品質量的辦法。
(4)課題攻關的終究效果是經過刀紋剖析,得到機床精度問題的斷定和修正,從而使得熱壓板的平面加工順暢達到規劃要求。
刀具經過砂輪刃磨后,刃口會存在不同程度的微觀缺陷,在切削過程中,刀具刃口微觀缺口極易擴展,加快刀具的磨損和損壞。刃口鈍化是延常刀具壽命的金屬切削配套技術,能有效減少或消除刃磨后的刀具刃口微觀缺陷,以達到圓滑平整,提高刀具抗沖擊性能,使刀具刃口鋒利堅固。
刃口鈍化方式可分為傳統刃口鈍化和特種刃口鈍化。傳統刃口鈍化方式主要包括磨削鈍化、毛刷鈍化、拖曳鈍化和噴砂鈍化等;特種刃口鈍化方式主要包括激光鈍化、電火花電蝕鈍化、電化學鈍化和磨料水射流鈍化等。
噴砂是以壓縮空氣為動力,以形成高速噴射束將噴料高速噴射到需要處理的工件表面,實現對工件表面的加工。由于磨料對工件表面的沖擊和切削作用,工件的表面性能和形狀會發生改變。而微噴砂技術是以傳統噴砂技術為基礎,采用微米級尺寸的磨料顆粒來進行待加工表面處理的技術,廣泛應用于材料的表面處理,包括表面清潔、表面鈍化和表面形貌處理。微噴砂處理的材料去除機理,包括裂紋擴展導致的脆性去除和磨料微切削產生的塑性去除。微噴砂技術在刀具領域主要應用在表面處理方面,如涂層刀具。通過對刀具基體表面進行相應的微噴砂處理,來改變基體的表面形貌,以增加涂層與刀具基體之間的粘結力,提高刀具的切削壽命。研究表明,對刀具的涂層表面進行微噴砂處理可以增加涂層硬度,提高刀具切削壽命。微噴砂技術在刀具刃口鈍化領域沒有得到廣泛應用,理論研究還不充分。
本文通過微噴砂技術對硬質合金刀片YT15進行刃口鈍化,研究微噴砂工藝參數對刃口半徑的影響以及微噴砂處理對刃口質量的影響,并分析微噴砂處理的材料去除機理。
1試驗步驟
試驗以噴砂壓力P、磨料比重W和噴砂時間T為因素,其中磨料比重W為磨料占水和磨料總質量的比重。每個因素設4個水平,進行64組全因素刃口鈍化試驗,因素水平見表1。
表1 微噴砂全因素試驗因素水平
采用濕式手動噴砂機,噴砂角度45°,噴砂距離8mm。磨料為320目白剛玉,微噴砂加工如圖1所示。選用可轉位硬質合金刀片YT15,其尺寸標準為SNMN120404,相應的材料性能見表2。通過激光共聚焦顯微鏡(LSM,Keyence VK-X200K)對微噴砂處理后的刀片刃口進行觀測,試驗觀測指標為刀片刃口半徑r和刃口線粗糙度Ra,終結果為三次測量后的平均值。同時對其刃口形貌進行掃描電子顯微鏡鏡(SEM)觀察,分析刃口材料去除機理。
圖1 硬質合金刀具YT15微噴砂加工示意圖
表2 硬質合金刀具YT15物理力學性能
2試驗結果與分析
(1)微噴砂工藝參數對刃口半徑的影響
圖2為硬質合金刀具YT15刃口半徑隨微噴砂各工藝參數的變化趨勢。圖2a、圖2b、圖2c和圖2d分別是在噴砂時間為20s、30s、40s和50s時刃口半徑隨噴砂壓力的變化圖。對比發現,在相同的噴砂壓力和磨料比重下,隨噴砂時間的增加,刀具刃口半徑增大,這實質上是材料去除隨著時間累積的結果。在相同的噴砂時間和磨料比重下,隨噴砂壓力的增加,刀具刃口半徑增大。這是因為隨著噴砂壓強的增加,磨料流的出口速度增加,單顆粒磨料速度也相應增加。
硬質合金可看作是硬脆材料,根據單顆粒磨料沖蝕模型可知,單顆粒磨料的材料去除量與磨料顆粒的速度的指數成正比,使得單顆粒磨料的材料去除量增加。同時磨料流速度的增加,使單位時間內有效沖擊刀具刃口的磨料顆粒數量增加,刃口材料的去除量變大。因此,增加噴砂壓力相當于既增加磨料比重又增加噴砂時間,兩者的共同作用使刃口半徑增大。
由圖2分析磨料比重對刀具刃口半徑的影響可知,在噴砂壓力為0.2MPa和0.25MPa時,隨著磨料比重的增加,刀具的刃口半徑先增大而后減小;而在噴砂壓力為0.3MPa和0.35MPa時,隨著磨料比重的增加,刀具的刃口半徑呈現一直增大的趨勢。同理,根據單顆粒磨料沖蝕模型分析可知,當噴砂壓力較小時,隨著磨料比重的增加,雖然單顆粒磨料速度減小,但是單位體積內磨料顆粒的數量增加,造成單位時間內磨料顆粒對刀具刃口的沖擊次數增加,所以刃口材料的去除量變大。當磨料比重過大時,根據能量守恒可知,磨料流的速度減小很多,其中磨料顆粒的速度大幅降低,不僅減少了單顆粒磨料材料的去除量,也使單位時間內磨料對刀具刃口的沖擊次數減少,進一步減少材料去除量,使得刃口半徑隨著磨料比重的增加先增大后減小。當噴砂壓力較大時,隨著磨料比重的增加,在單位時間內增加的磨料對刀具刃口的沖擊次數所增加的材料去除量要多于單顆粒磨料速度降低而減少的材料去除量。總的來說,單位時間內材料去除量增加,因此在較大噴砂壓力下,刀具的刃口半徑隨著磨料比重的增加而增加。
(a)T=20s(b)T=30s(c)T=40s(d)T=50s
圖2 刃口半徑隨微噴砂各工藝參數的變化趨勢
(2)微噴砂處理對刃口線粗糙度的影響
圖3是硬質合金刀片YT15經過微噴砂刃口鈍化處理前后的切削刃形貌。采用微噴砂工藝參數:噴砂壓力P=0.2MPa,磨料比重W=0.1,噴砂時間T=30s。通過測量得到切削刃的相關參數見表3。
圖3 未處理刀片與微噴砂刃口鈍化刀片的切削刃形貌
可以發現,硬質合金刀片YT15的刃口輪廓由原來的r=6μm銳刃變成r=27μm的圓弧刃口。其切削刃形貌得到改善,刃口線粗糙度Ra由原來的0.79μm下降到0.5μm,Ry則由原來的6μm下降到3μm。這是由于微噴砂處理消除了刀具刃磨時產生的微觀缺陷,改善了刃口質量。
表3 未處理刀片與微噴砂刃口鈍化刀片刃口參數對比(μm)
圖4是微噴砂全因素試驗時硬質合金刀片YT15的刃口線粗糙度的分布情況。可以得出,硬質合金YT15刀片的刃口線粗糙度為0.3-0.8μm,滿足刀片的刃口粗糙度要求。
圖4 硬質合金刀具YT15刃口線粗糙度分布
(3)微噴砂刃口材料去除機理研究
刀片的微噴砂過程實質上是高速磨料射流沖擊材料表面,實現材料的去除。其材料去除機理主要歸結為磨料顆粒對材料的去除方式。對于脆性材料,其去除機理往往不只有脆性去除,還包括磨料顆粒的微剪切引起的塑性去除。
圖5是硬質合金刀具YT15在噴砂壓力P=0.25MPa、磨料目數M=320、噴砂時間T=20s和磨料比重W=0.1時的刃口形貌。可以看出,經過微噴砂處理后,刀具出現了圓弧刃口,對其圓弧刃口的區域A進行放大,可以觀察刃口材料去除形成的微觀形貌。通過區域B可以看出,其硬質合金中硬質相的去除多為由裂紋擴展造成的脆性斷裂,這是由于棱角尖銳的磨料顆粒對于硬質相的沖擊作用,使之產生徑向裂紋和側向裂紋,由于磨料顆粒的高頻率沖擊,進而造成側向裂紋的擴張形成網狀裂紋,達到材料的去除。對于C區域的觀察,也可以發現刃口材料上存在磨料顆粒的刻劃痕跡,這主要是由于具有鋒利刃口的白剛玉磨料顆粒對工件材料的微切削作用導致。由于刀具材料中除硬質相成分外,還包括粘結相,其微切削作用相對于粘結相更為明顯,粘結相材料先于硬質相去除,使得硬質相成分顯露出來。因此微噴砂處理硬質合金刀具YT15的材料去除機理,包括由磨料沖擊和水楔作用引起裂紋擴展而導致硬質相材料的脆性去除,還包括磨料顆粒的微切削作用引起的材料塑性去除。
圖5 硬質合金刀具YT15微噴砂刃口形貌SEM圖
小結
微噴砂處理可以對硬質合金刀具YT15刃口進行有效鈍化,形成一定圓弧半徑的刀具刃口。研究表明,刃口圓弧半徑隨著微噴砂時間和噴砂壓力的增加而增大。對于磨料比重而言,在噴砂壓力為0.2MPa和0.25MPa時,隨著磨料比重的增加,刀具刃口半徑先增大而后減小;在噴砂壓力為0.3MPa和0.35MPa時,隨著磨料比重的增加,刀具刃口半徑呈現一直增大的趨勢。微噴砂處理可有效改善硬質合金刀具YT15的刃口質量,消除微觀缺陷,降低刃口線粗糙度,在結構上對刀具刃口進行鈍化。硬質合金刀具YT15刃口材料的去除機理,包含由裂紋擴展而導致硬質相材料的脆性去除和微切削作用引起的材料塑性去除。
?加工中心常用的幾種刀具
1加工中心常用的幾種刀具
在加工中心上,其主軸轉速較一般機床的主軸轉速高1~2倍,某些特殊用處的數控機床、加工中心主軸轉速高達數萬轉,因而數控機床用刀具的強度與耐用度至關重要。目前涂層刀具與立方氮化硼等刀具已廣泛用于加工中心,淘瓷刀具與金剛石刀具也開端在加工中心上運用。一般來說,數控機床用刀具應具有較高的耐用度和剛度,刀具資料抗脆性好,有良好的斷屑功用和可調易替換等特色。例如,在數控機床上進行銑削加工時挑選刀具要注意如下關鍵:
平面銑削時應選用不重磨硬質合金端銑刀或立銑刀。一般銑削時,盡量選用二次走刀加工,地一次走刀蕞好用端銑刀粗銑,沿工件外表接連走刀。選好每次走刀寬度和銑刀直徑,使接刀痕不影響精切走刀精度。因而加工余量大又不均勻時,銑刀直徑要選小些,反之,選大些。精加工時銑刀直徑要選大些,蕞好能容納加工面的整個寬度。
加工中心刀具
立銑刀和鑲硬質合金刀片的端銑刀主要用于加工凸臺、凹槽和箱口面。為了軸向進給時易于吃刀,要選用端齒特殊刃磨的銑刀,如圖a所示。為了減少振動,可選用圖b所示的非等距三齒或四齒銑刀。為了加強銑刀強度,應加大錐形刀心,變化槽深,如圖c所示。
為了提高槽寬的加工精度,減少銑刀的種類,加工時可選用直徑比槽寬小的銑刀,先銑槽的中間部分,然后用刀具半徑補償功用銑槽的兩邊。
銑削平面零件的周邊概括一般選用立銑刀。刀具的結構參數可參考如下:
①刀具半徑R應小于零件內概括的蕞小曲率半徑ρ,一般取R=(O.8~0.9)ρ。
②零件的加工高度H≤(1/4~1/6)R確保刀具有足夠的剛度。
③粗加工內型面時,刀具直徑可按下式估算(見下圖):
式中,δ1為槽的精加工余量;δ為加工內型面時的蕞大允許精加工余量;φ為零件內壁的蕞小夾角;D為工件內型面蕞小圓弧直徑。
加工中心刀具圖紙
數控加工中心加工曲面和變斜角概括外形時常用球頭刀、環形刀、鼓形刀和錐形刀等,見下圖。圖中的O點表示刀位點,即編程時用來計算刀具方位的基準點。加工曲面時球頭刀的使用普遍。可是越接近球頭刀的底部,切削條件就越差,因而近來有用環形刀(包含瓶底刀)替代球頭刀的趨勢。鼓形刀和錐形刀都可用來加工變斜角零件,這是單件或小批量出產中取代四坐標或五坐標機床的一種變通辦法。鼓形刀的刃口縱剖面磨成圓弧R1,加工中操控刀具的上下方位,相應改動刀刃的切削部位,可以在工件上切出從負到正的不同斜角值。圓弧半徑R1越小,刀具所能習慣的斜角規模就越廣,可是行切得到的工件外表質量就越差。鼓形刀的缺陷是刃磨困難,切削條件差,并且不習慣于加工內緣外表。錐形刀的狀況相反,刃磨容易,切削條件好,加工,工件外表質量也較好,可是加工變斜角零件的靈活性小。當工件的斜角變化規模大時需求中途分階段換刀,留下的金屬殘痕多,增大了手工銼修量。
2對刀技巧
對刀分為對刀儀對刀及直接對刀。我廠大部分車床無對刀儀,為直接對刀,以下所說對刀技巧為直接對刀。 先挑選零件右端面中心為對刀點,并設為零點,機床回原點后,每一把需求用到的刀具都以零件右端面中心為零點對刀;刀具接觸到右端面輸入Z0點擊丈量,刀具的刀補值里邊就會自動記錄下丈量的數值,這表示Z軸對刀對好了,X對刀為試切對刀,用刀具車零件外圓少些,丈量被車外圓數值(如x為20mm)輸入x20,點擊丈量,刀補值會自動記錄下丈量的數值,這時x軸也對好了;這種對刀方法,就算機床斷電,來電重啟后仍然不會改動對刀值,可適用于大批量長期出產同一零件,其間封閉車床也不需求重新對刀
3依據資料硬度挑選合理的轉速、進給量及切深。
1、碳鋼資料挑選高轉速,高進給量,大切深。如:1Gr11,挑選S1600、F0.2、切深
2mm;
2、硬質合金挑選低轉速、低進給量、小切深。如:GH4033,挑選S800、F0.08、切深0.5mm ;
3、鈦合金挑選低轉速、高進給量、小切深。如:Ti6,挑選S400、F0.2、切深0.3mm。以我加工某零件為例:資料為K414,此資料為特硬資料,通過屢次實驗,終究挑選為S360、F0.1、切深0.2,才加工出合格零件
4車刀刃磨操作口訣
常用車刀種類和資料,砂輪的選用
常用車刀五大類,切削用處各不同,
外圓內孔和螺紋,切斷成形也常用;
車刀刃形分三種,直線曲線加復合;
車刀資料種類多,常用碳鋼氧化鋁,
硬質合金碳化硅,依據資料選砂輪;
砂輪顆粒分粒度,粗細不同勿亂用;
粗砂輪磨粗車刀,精車刀選細砂輪。
5車刀刃磨操作技巧與注意事項
刃磨開機先查看,設備安全重要;
砂輪轉速穩定后,雙手握刀立輪側;
兩肘夾緊腰部處,刃磨平穩防抖動;
車刀高低須操控,砂輪水平中心處;
刀壓砂輪力適中,反力太大易打滑;
手持車刀均勻移,溫高燙手則暫離;
刀離砂輪應小心,保護刀尖先抬起;
高速剛刀可水冷,避免退火保硬度;
硬質合金勿水淬,驟冷易使刀具裂;
先停磨削后停機,人離機房斷電源
690°、75°、45°等外圓車刀刃磨步驟
粗磨先磨主后邊,桿尾向左偏主偏;
刀頭上翹 38 度,構成后角摩擦減;
接著磨削副后邊,終刃磨前刀面;
前角前面同磨出,先粗后精順序清;
精磨首先磨前面,再磨主后副后邊;
修磨刀尖圓弧時,左手握住前支點;
右手滾動桿尾部,刀尖圓弧天然成;
面評刃直穩中求,視點正確是關鍵;
樣板角尺細查看,經驗豐富可目測。