您好,歡迎來到易龍商務網!
發布時間:2021-09-04 13:46  
【廣告】





金屬學基礎
鐵碳合金的基本組織
①奧氏體:碳溶于r-Fe中的間隙式固溶體稱為奧氏體,常用A表示。因為面心立方晶格的r-Fe總的間隙量雖比a-Fe的小,但空隙半徑比較大,所以能溶較多的碳。電化學拋光過程分為兩步:(1)宏觀整平溶解產物向電解液中分散,材料外表幾何毛糙下降,Ra>1μm。碳在r-Fe中的溶解度隨溫度升高而增加,在727度時為0.77%,在1148度時達到峰值2.11%。
奧氏體塑性很好,強度和硬度也比鐵素體高。
②鐵素體:碳溶于a-Fe中的間隙式固溶體稱為鐵素體,常用F表示。捏合機是由一對互相配合和旋轉的葉片(通常呈Z形)所產生強烈剪切作用而使半干狀態的或橡膠狀粘稠塑料材料能使物料迅速反應從而獲得均勻混合攪拌的設備。因為體心立方晶格的a-Fe總的間隙量雖大,但是間隙半徑卻很小,所以碳在a-Fe中的溶解度很小,室溫下不超過0.005%,隨著溫度升高,溶解度略有增加,在727度時達到峰值,也僅有0.0218%。
鐵素體含碳量很低,其性能接近純鐵,是一種塑性、韌性高和強度、硬度低的組織。
③珠光體:鐵素體和滲碳體組成的機械混合物叫做珠光體,常用P表示。珠光體的平均含碳量為0.77%。但是從行業發展的總體情況來看,我國現階段的MIM前景喜人,但在某些方面與國外還存在一定差距。其性能介于鐵素體和滲碳體之間。一般情況下,珠光體中鐵素體和滲碳體呈片狀交替分布,稱為片狀珠光體。通過熱處理可以使滲碳體呈顆粒狀分布在鐵素體基體上,叫做球狀珠光體或粒狀珠光體。
④滲碳體:滲碳體是鐵與碳的化合物,常用Fe3C表示。滲碳體的含碳量為6.69%,熔點約為1227度,晶體結構復雜,硬度很高,脆性極大,幾乎沒有塑性。
一般來說,在鐵碳合金中,滲碳體越多,合金就越硬,越脆。
⑤馬氏體:鋼加熱到一定溫度(形成奧氏體)后經迅速冷卻(淬火),得到的能使鋼變硬、增強的一種淬火組織,常用M表示,馬氏體是體心正方結構。
馬氏體轉變速度極快,轉變時體積產生膨脹,在鋼絲內部形成很大的內應力,所以淬火后的鋼絲需要及時回火,防止應力開裂。
日本MIM工業產品發展迅速
金屬粉末注射成型技術(metal Powder Injection Molding,簡稱MIM)是將現代塑料噴射成形技術引入粉末冶金領域而形成的一門新型粉末冶金近凈形成形技術。其基本工藝過程是:首先將固體粉末與有機粘結劑均勻混練,經制粒后在加熱塑化狀態下(~150℃)用噴射成形機注入模腔內固化成形,然后用化學或熱分解的方法將成形坯中的粘結劑脫除,最后經燒結致密化得到最終產品。良好的滲透性:由于靜電屏蔽效應,工件的深孔、狹縫,管件的內壁等部位難以電鍍上鋅,因此工件的上述部位無法采用電鍍的方法進行保護。與傳統工藝相比,具有精度高、組織均勻、性能優異,生產成本低等特點,其產品廣泛應用于電子信息工程、生物醫用器械、辦公設備、汽車、機械、五金、體育器械、鐘表業、兵工及航空航天等工業領域。因此,國際上普遍認為該技術的發展將會導致零部件成形與加工技術的一場革命,被譽為“當今最熱門的零部件成形技術”和“21世紀的成形技術”。
美國加州Parmatech公司于1973年發明,八十年代初歐洲許多國家以及日本也都投入極大精力開始研究該技術,并得到迅速推廣。特別是八十年代中期,這項技術實現產業化以來更獲得突飛猛進的發展,每年都以驚人的速度遞增。到目前為止,美國、西歐、日本等十多個國家和地區有一百多家公司從事該工藝技術的產品開發、研制與銷售工作。這種方式的重要長處是不需龐雜設備,可以拋光外形龐雜的工件,可以同時拋光很多工件,效率高。日本在競爭上十分積極,并且表現突出,許多大型株式會社均參與MIM工業的推廣,這些公司包括有太平洋金屬、三菱制鋼、川崎制鐵、神戶制鋼、住友礦山、精工——愛普生、大同特殊鋼等。目前日本有四十多家專業從事MIM產業的公司,其MIM工業產品的銷售總值早已超過歐洲并直追美國。到目前為止,全球已有百余家公司從事該項技術的產品開發、研制與銷售工作,MIM技術也因此成為新型制造業中最為活躍的前沿技術領域,被世界冶金行業的開拓性技術,代表著粉末冶金技術發展的主方向。

荷蘭公司用金屬3D打印制造超級摩托車電機冷卻
荷蘭超級摩托車制造商Electric Superbike Twente與金屬3D打印公司K3D合作,為其電動自行車的電機生產新的冷卻外殼。這是Electric Superbike Twente使用的一款3D打印金屬組件,在此前的產品開發中,他們意識到使用傳統技術生產的電機冷卻外殼并不適合高性能摩托車,因此雙方在設計第二輛電動摩托車后不久就開始合作。粉末冶金零件生坯具有適當的強度是必要的,以便壓坯從陰模中脫出和將其運送到燒結爐而不會損壞。
傳統制造的局限性
超級摩托車團隊的技術經理Feitse Krekt 評論說:“首輛超級摩托車的冷卻外殼由多個部件組成,這些部件使用傳統的生產方法,如車削和銑削,很難生產。對于這些生產方法,需要大量的材料,因此最終產品變得非常沉重。而且另外一個問題是,由于車削過程,壁厚需要高于常規,我們無法盡可能高效地冷卻電動機。☆組合為了節省庫存與組裝費用,當講多個零件團結為一個零件時,可以受益。所以,電機的功率低于預期,有時需要放慢速度以使電動機不會過熱。”
因此,超級摩托車決定聯系K3D,K3D是荷蘭一家從Additive Industries購買了metalFab1 金屬3D打印機的公司,自2016年以來已生產超過35,000種產品。
△用于生產冷卻外殼的metalFab1 3D金屬打印機
K3D的首席技術官Jaap Bulsink解釋說,使用K3D生產的部件使他們能夠享受傳統制造技術無法提供的設計自由,“由于采用薄壁設計,內部通道具有zui佳的冷卻性能,只有金屬3D打印才能實現極佳設計自由度。重要的是,該部件的設計重量最輕。該部件打印非常準確,無需任何后處理即可直接使用。以上是粉末冶金齒輪一些缺點,不過凡事有利就有弊,相信隨著時代的快速發展,粉末冶金齒輪的不足點也會慢慢的得到改善。”
這不是3D打印初次用于制造電動摩托車。總部位于德國的BigRep已經制造出功能齊全的3D打印電動摩托車,但該自行車僅用于設計目的,目前還不是一種可行的商業產品。另外,寶馬今年早些時候推出了3D打印概念車架,用于BMW S1000RR運動自行車。濃型放熱氣氛的碳勢較高一些,可用作防止粉末冶金鐵基、銅基零件的的氧化和減少鐵基零件的脫碳。
電動超級摩托車目前正在組裝,之后將于2019年5月24日在荷蘭恩斯赫德進行測試并最終曝光。

