您好,歡迎來到易龍商務(wù)網(wǎng)!
發(fā)布時(shí)間:2021-09-17 01:52  
【廣告】





人工智能控制器
建立相匹配的控制模型,同時(shí)根據(jù)數(shù)據(jù)實(shí)時(shí)反饋選擇控制方案,持續(xù)進(jìn)化,給出優(yōu)控制參數(shù)值。品投運(yùn)后云端一鍵操作,的簡單背后是強(qiáng)大的算法支持:決策機(jī)TMAI可根據(jù)用戶設(shè)置的室溫目標(biāo)數(shù)據(jù),完成復(fù)雜運(yùn)算后直接給出控制目標(biāo)參數(shù),如供水溫度等。決策機(jī)TMAI模型可以解決傳統(tǒng)控制模型中室溫?cái)?shù)據(jù)滯后性問題,結(jié)合氣候參數(shù)提前預(yù)測、預(yù)知合理控制目標(biāo)值,提前干預(yù),平抑室溫波動。
但是,還有很多研究工作要做,現(xiàn)在還只有少數(shù)實(shí)際應(yīng)用的例子(學(xué)術(shù)研究組實(shí)現(xiàn)少,工業(yè)運(yùn)用的就更少了),大多數(shù)研究只給出了理論或結(jié)果,因此,常規(guī)控制器在將來仍要使用相當(dāng)長一段時(shí)間。為此,本文論述了人工智能在電氣傳動領(lǐng)域中的應(yīng)用。將PID控制和模糊控制相結(jié)合,控制直流電動機(jī).首先對直流電動 機(jī)的PID控制進(jìn)行,鑒于其參數(shù)變化范圍大,整定過程繁鎖
在各種出版物中,介紹了許多被模糊化的控制器,但這應(yīng)與“充分模糊”控制器完全區(qū)分開來,“充分模糊”控制器才是完全意義上的模糊控制器,被模糊化的控制器易于實(shí)現(xiàn),往往通過改造現(xiàn)有古典控制器得以實(shí)現(xiàn),如被模糊化的PI控制器(FPIC)使用模糊邏輯改變控制器的比例、積分參數(shù),從而使系統(tǒng)的性能得到提高
運(yùn)用常規(guī)反向傳播學(xué)習(xí)算法。該系統(tǒng)由兩個(gè)子系統(tǒng)構(gòu)成,一個(gè)系統(tǒng)通過電氣動態(tài)參數(shù)的辯識自適應(yīng)控制定子電流,另一個(gè)系統(tǒng)通過對機(jī)電系統(tǒng)參數(shù)的辯識自適應(yīng)控制轉(zhuǎn)子速度。后值得指出的是現(xiàn)在發(fā)表的大多數(shù)有關(guān)ANN對各種電機(jī)參數(shù)估計(jì)的,一個(gè)共同的特點(diǎn)是,它們都是用多層前饋ANNS,用常規(guī)反向傳播算法,只是學(xué)習(xí)算法的模型不同或被估計(jì)的參數(shù)不同。