您好,歡迎來到易龍商務網!
發布時間:2021-09-01 19:55  
【廣告】





粉末注射成型技術彎道超車
粉末注射成型適用不銹鋼,鐵基合金,磁性材料,鎢合金,硬質合金,精細陶瓷等系列。所制備的零件廣泛應用于航空航天工業、汽車業、兵工業、醫用器械、機械行業、日用品等領域。那么粉末注射成型和其他成形工藝特點的比較,哪個更具優勢呢?
(一)與傳統粉末冶金工藝比較
粉末注射成型作為一種制造高質量精密零件的近凈成形技術,具有常規粉末冶金方法無法比擬的優勢。MIM能制造許多具有復雜形狀特征的零件:如各種外部切槽,外螺紋,錐形外表面,交叉通孔、盲孔,凹臺與鍵銷,加強筋板,表面滾花等等,具有以上特征的零件都是無法用常規粉末冶金方法得到的。以及常州精研科技股份有限公司,是國內最先上市的MIM企業代表。
(二)與比精密鑄造比較
精密鑄造對于熔點相對較低的金屬或合金,精密鑄造也可以成形三維復雜形狀的零件。但對于難熔金屬和合金、硬質合金、金屬陶瓷、陶瓷等卻無能為力,這是精密鑄造的本質所決定的。另外,對于尺寸小、壁薄、大批量的零件采用精密鑄造是十分困難或不可行的。
(三)與機加工比較
傳統機械加工法,近來靠自動化而提升其加工能力,在效率和精度上有極大的進步,但是基本的程序上仍脫不開逐步加工(車削、刨、銑、磨、鉆孔、拋光等)完成零件形狀的方式。
機械加工方法的加工精度遠優于其他加工方法,但是因為材料的有效利用率低,且其形狀的完成受限于設備與刀具,有些零件無法用機械加工完成。相反的,粉末注射成型可以有效利用材料,形狀自由度不受限制。對于小型、高難度形狀的精密零件的制造,粉末注射成型工藝比較機械加工而言,其成本較低且效率高,具有很強的競爭力。MIM技術彌補了傳統加工方法在技術上的不足或無法制作的缺憾,并非與傳統加工方法競爭。粉末注射成型技術可以在傳統加工方法無法制作的零件領域發揮其特長。美國Injectamax公司和德國BASF公司將脫脂時間從數十小時縮短到幾個小時,而且保形性得到明顯改善,產品的尺寸精度從±0。
我國近十年來粉末冶金成形新技術綜述
粉末冶金是一項集材料制備與零件成形于一體,節能、節材、高效、最終成形、少污染的先進制造技術,在材料和零件制造業中具有不可替代的地位和作用,已經進入當代材料科學的發展前沿。
目前粉末冶金技術正向著高致密化、高性能化、低成本方向發展,本文著重介紹幾種近十年來粉末冶金零件的成形新技術。
一、溫壓技術
溫壓技術是粉末冶金領域近幾年發展起來的一項新技術,可生產出高密度、高強度,具有非常廣泛的應用前景。所謂溫壓技術就是采用te制的粉末加溫、粉末輸送和模具加熱系統,將加有特殊潤滑劑的預合金粉末和模具等加熱至130~150℃,并將溫度波動控制在±2.5℃以內,然后和傳統粉末冶金工藝一樣進行壓制、燒結而制得粉末冶金零件的技術。其技術關鍵:一是溫壓粉末制備,二是溫壓系統。七、噴砂噴砂:是采用壓縮空氣為動力,以形成高速噴射束將噴料高速噴射到需處理工件表面,使工件表面的外表面的外表或形狀發生變化,獲得一定的清潔度和不同的粗糙度的一種工藝。
與傳統工藝相比,溫壓成形的壓坯密度約有0.15~0.30g/cm3的增幅,其密度可達7.45g/cm3。在相同的壓制壓力下,溫壓材料的屈服強度比傳統工藝平均高11%,極限拉伸強度平均高13.5%,沖擊韌性可提高33%。另外,溫壓零件的生坯強度高,可達2O~30MPa,比傳統方法提高50—100%,不僅降低生坯搬運過程中的破損率而且能對生坯進行機加工,表面光潔度好。此外,溫壓工藝的壓制壓力低和脫模力小,同時零件性能均一,產品精度高,材料利用率高。其缺陷是防污染性高,加工設備一次性投資大,龐雜件要工裝、輔佐電極,大批生產還須要降溫設備。
溫壓工藝還有一個特點是工藝簡單,成本低廉。研究表明,假如一次壓制、燒結的普通粉末冶金工藝的成本為1.0,則粉末鍛造的相對成本為2.0,復壓復燒的相對成本為1.5,滲銅的相對成本為1.4,而溫壓技術的相對成本為1.25。目前,采用溫壓技術生產的粉末冶金零件已達200多種,零件重量在5—1200g。例如,德國SinterstahlGmbH公司用溫壓技術生產復雜的摩擦傳動用同步齒環,在美國新奧爾蘭舉行的PM2TEC2001國際會議上獲獎。該零件的齒部密度超過7.3g/cm,環體密度超過7.1g/cm,生坯強度達到28MPa。采用了擴散合金化的燒結硬壓粉末,zui低抗拉強度為850MPa。②可以消除網狀二次滲碳體,并使珠光體細化,不但改善機械性能,而且有利于以后的球化退火。由于使用了溫壓技術和采用粉末冶金零件,使得綜合成本降低了38%。
二、流動溫壓技術
流動溫壓技術(Warm Flow Compaction,簡稱WFC)是在粉末壓制、溫壓成形工藝的基礎上,結合了金屬粉末注射成形工藝的優點而提出來的一種新型粉末冶金零部件近凈成形技術。其關鍵技術是提高混合粉末的流動性。它通過提高了混合粉末的流動性、填充能力和成形性,從而可以在8O~130~C溫度下,在傳統壓機上精密成形具有復雜幾何外形的零件,如帶有與壓制方向垂直的凹槽、孔和螺紋孔等零件,而不需要其后的二次機加工。WFC技術既克服了傳統粉末冶金在成形復雜幾何形狀方面的不足,又避免了金屬注射成形技術的高成本,是一項極具潛力的新技術,具有非常廣闊的應用前景。粉狀涂層經過高溫烘烤流平固化,變成效果各異(粉末涂料的不同種類效果)的最終涂層。
WFC技術作為一種新型的粉末冶金零部件近凈成形技術,其主要特點如下:(1)可成形具有復雜幾何形狀的零件;(2)壓坯密度高、密度均勻;(3)對材料的適應性較好;(4)工藝簡單,成本低。

粉末冶金MIM工藝相比傳統精鑄工藝的優勢
MIM使用的原料粉末粒度直徑為2—15urn,而傳統粉末冶金(PM)的原料粉末粒度為50—100urn。MIM工藝的成品密度高,原因是使用微細粉末。MIM產品形狀自由度是PM所不能達到的。
傳統的精密鑄造(IC)工藝作為一種制作復雜形狀產品極有效的技術,近年使用陶心輔助可以完成狹縫、深孔穴的產品,但礙于陶心的強度以及鑄液的流動性限制,該工藝仍有某些技術上的難題。一般而言,此工藝制造大、中型零件較為合適,而小型復雜零件則MIM工藝較為合適,而且IC工藝材質受到一定限制。在早期開發中,使用傳統潤滑劑,諸如硬脂酸鋅與EBS臘等進行過生產試驗,生坯廢品率高達50%。
壓鑄工藝適用于鋁和鋅合金等低熔點、鑄流性好的材料,而MIM工藝適合各種材質。
精密鍛造可以成型復雜零件,但不能成型三維復雜的小型零件,其產品的精度低,產品有局限。
傳統機械加工法:近來靠自動化和數控提升加工能力,在效率和精度上有很大的進展,但是基本的程序上仍脫不開逐步加工車、刨、銑、磨、鉆、拋等完成零件形狀的方式,機械加工的方法精度和復雜度遠優于其他方法,但是因為材料的有效利用率低,且形狀的完成受限于設備與刀具,有些零件無法用機械加工完成。相反,MIM可以有效利用材料,形狀自由度不受限制。對于小型、復雜、高難度形狀的精密零件的制造,MIM工藝比較機械式加工而言,其成本較低且效率高,具有競爭力。以上是粉末冶金齒輪一些缺點,不過凡事有利就有弊,相信隨著時代的快速發展,粉末冶金齒輪的不足點也會慢慢的得到改善。

