您好,歡迎來到易龍商務網!
發布時間:2020-10-29 04:57  
【廣告】





粉末冶金行業發展勢不可擋
粉末冶金屬于現代工業發展的朝陽產業,以制取金屬或用金屬粉末(或金屬粉末與非金屬粉末的混合物)作為原料,經過成形和燒結,制造金屬材料、復合以及各種類型制品的工藝技術。
我國粉末冶金行業起步較晚,但發展迅猛,特別是汽車行業、機械制造、金屬行業、航空航天、儀器儀表、五金工具、工程機械、電子家電及高科技產業等迅猛發展,為粉末冶金行業帶來了較大的發展機遇。
具體數據顯示,1948年我國硬質合金產量僅有2-3萬噸,但2000年后我國粉末冶金市場迅速崛起。2009年我國粉末冶金行業產量為11.30萬噸,超過日本躍居亞洲首位。2014年粉末冶金行業銷量達19.18萬噸,2017年增長至20.08萬噸,增幅為4.7%。化學拋光其長處是加工設備投資少,龐雜件能拋,速度快,防腐性好。
從應用領域來看,現階段,我國粉末冶金產品主要應用于汽車、家電、電動工具、摩托車、農業機械及工程機械等工業。隨著我國汽車行業的快速發展,粉末冶金制品本土化需求不斷擴大,2016年,應用于汽車方面的粉末冶金零件共10.09萬噸,占比54.69%,同比上升6.55%。未來下游產業的發展將會繼續拉動上游產業的發展,整個行業的容量仍在不停擴大。步驟如下﹕1使表面粗糙度達到一定要求﹐可通過表面磨光﹐拋光等工藝方法來實現。
汽車領域應用較少,技術相對落后
在發達國家如美國、歐洲、日本,粉末冶金產品主要應用于汽車領域,汽車粉末冶金產品占粉末冶金總產品的比例高達80%以上,其產品包括VVT(可變氣門正時系統)、VCT(可變氣門凸輪軸正時系統)、各類泵組件、鏈輪、同步環、行星齒輪等,種類覆蓋十分齊全。例如:提高工具、軸承等的硬度和耐磨性,提高彈簧的彈性極限,提高軸類零件的綜合機械性能等。
而在我國,2017年,粉末冶金市場汽車應用占比僅為60%。我國粉末冶金汽車零件占比遠低于發達國家,占比提升潛力大。
單車用量方面,中國提升空間同樣相對可觀。2017年,北美粉末冶金零件單車用量可達18.6Kg,日本為8.0Kg,歐洲為7.2Kg,而中國僅為4.5Kg。這種差距產生的主要原因是,我國國內很多粉末冶金產品達不到要求的尺寸公差與性能參數,因此,汽車主機廠只能選擇成本更高的鍛造零件與機加工零件。壓機一般都幾噸到幾百噸壓力,直徑基本是在110MM以內都可以制作成粉末冶金。
國內企業成本優勢顯著,進口替代空間廣闊
與國外公司相比,國內企業在人力成本、土地成本、原料成本等方面均具有優勢,能夠為主機廠與一級供應商提供更低價的粉末冶金產品。同時,國內企業交貨周期短,售后服務快速、及時,能夠為國內主機廠提供更優質的服務。
從技術角度來看,2015年,發布《中國制造2025》的通知,其中重點提出要大力發展智能制造、增材制造、新材料、生物醫用等領域。我們認為在國家政策的大力扶持下,國內粉末冶金技術有望得到快速發展,替代市場逐步由低端轉向高技術。
另外,專利申請授權量的持續增長彰顯粉末冶金技術的不斷成熟。2016年,我國鑄造、粉末冶金專利申請授權量為8295項,同比增長11.62%,近五年(2012-2016年)復合增長率為16.02%。
綜合來看,國內粉末冶金產品進口替代空間十分廣闊

還原鐵粉已成為制造業無法替代的高等級材料
還原鐵粉是粉末冶金和軟磁感應器件的基礎原料,其產品由于具有高度的可加工性,可以制成各種超薄、特異形狀器件,具有極強的抗沖擊、抗腐蝕、耐磨損和高強度特性,廣泛地應用于汽車、機械、船舶、機車等領域,是單純靠熔煉制成的鋼鐵材料所無法替代的高等級材料。不過,可以通過后處理或復合涂層獲得不同的顏色,以提高載重汽車零部件的裝飾性和匹配性。
此外在變壓器磁芯、電感應器件、優質焊條、靜電復印、化工、醫用、食品保鮮等行業的應用也日趨廣泛。隨著科學技術的發展,高純鐵粉的應用領域將越來越廣,使用量也越來越大。
根據分析,還原鐵粉的原始材料是氧化鐵皮,主要是以四氧化三鐵存在的。由于原本的利用氫氣還原產生的效果不是很好,所以改之為用隧道窯選用碳作為還原劑來還原產品,得到的還原效率還是比較高的,因此以碳作為還原劑在一次還原中進行脫氧處置,被廣泛的應用。MIM的發展進程20世紀70年代,美國學者Wiech首先開發出一種對金屬粉末進行注射成形的粉末冶金工藝。
由此可見,粉末冶金用還原鐵粉生產工序也是一種一次還原,因此一般都是選用碳即焦末作為還原劑進行還原,形成的為海綿鐵的半成品;形成置換海綿銅鐵粉,當然這還不是最終的產品,還要對其進行破碎處理后再要進行二次還原,這時就可以用氫氣作為還原劑進行還原,得到我們想要的產品。黑色金屬表面經“發藍”處理后所形成的氧化膜,其外層主要是四氧化三鐵,內層為氧化亞鐵。


粉末微注射成形技術
近年來,微系統技術在各個領域的發展非常迅速,同時也對應用于微型工程中的三維微型復雜元器件的制造提出了更高的要求,希望微型器件在具備滿足使用要求性能的同時,能夠實現規模化生產。微系統中主要的元器件包括微型模具、用于傳感器和jia速器上的微型機械結構、生物傳感器、微型流體元件、微型反應器等。這些元器件形狀復雜、體積微小,采用現有的微型加工技術如微型切削、激光切削、硅刻蝕技術等,生產效率低,無法開展大規模生產,而近年來在粉末注射成形基礎上發展起來的粉末微注射成形工藝為實現微型元器件規模化生產提供了zui具潛力的制備技術。從某種程度上正在以驚人的速度取代CNC精加工等傳統成型技術,且該技術在突破核心技術攻堅后,質量穩定,便于大批量生產,客戶滿意度高,企業回報率高。
粉末微注射成形技術是指針對尺寸小于1微米的零件在傳統粉末注射成形技術基礎上所開發的一種成形技術,主要應用于連續制造具有微觀結構表面與微型結構的零件,其基本工藝步驟與傳統的粉末注射成形基本相同,所制備零件的表面質量與孔隙度可通過選擇原始粉末與適宜的燒結條件來控制。與傳統粉末注射成形不同的是,粉末微注射成形為了便于制造微小結構,所選擇的粉末平均粒徑一般小于1~2微米;其次,由于粉末比表面積增大,需要粘度較低但有足夠強度的粘結劑,以利于微注射成形并避免生坯件脫模時損壞。另外,為了防止變形、裂紋及氣泡的產生,微注射成形技術對脫脂和燒結的工藝條件更加苛刻。技術難點及改善關鍵點:陽極氧化的良率水平關系到最終產品的成本,提升氧化良率的重點在于適合的氧化劑用量、適合的溫度及電流密度,這需要結構件廠商在生產過程中不斷探索,尋求突破。
目前,國際上開展該技術研究的主要國家有德國、日本、新加坡、美國和英國。其中,德國開展并取得了突出的成果。國內的北京科技大學、中南大學以及大連理工大學也在該領域進行了一系列研究工作。如北京科技大學研制了具有自主知識產權、適用于傳統注射成形機的粉末微注射成形用模具;并以羰ji鐵粉和鐵鎳合金粉為原料,在傳統注射成形機上成功實現了粉末微注射成形齒頂圓直徑小于1毫米的微型齒輪。分解氨是液氨經熱分解后獲得的由氫和氮組合的混合氣體,在粉末冶金中即可作為還原劑,也用來作為燒結氣氛,除了某些含有氮成分的制品因與該氣氛產生化學反應不能采用這種氣氛燒結以外,大多數的金屬都可采用這種氣氛來燒結。


快速模具技術
正常生產模具的制造成本通常很高,許多情況下需要制作實驗模具去發現驗證設計生產整個過程中可能遇到的問題,最終的模具肯定要修改。為適應這種情況,出現了許多快速或軟模具技術用來制造滿足幾百件零件試制的實驗模具。
目前鋁合金、顆粒增強環氧樹脂、鈹銅、低碳鋼、不銹鋼及鈷合金等已被用作制造軟的金屬注射模具。由于容易成型,鋅、鋁和鉍合金等偶爾也用于制造試驗模具及樣品原型。
但由于容易劃傷和損壞,最終的生產模具會采用硬質材料。
利用有機硅橡膠模具工藝原理,制作使用壽命有限的MIM塑料注塑模具是一項較新的模具技術。將熔融塑料澆在母模型腔周圍,凝固硬化后,剖開塑料取出母模模型。壓入受限制的模架中,這樣的塑料模具可以用來承受幾百次的低壓注射試驗。
激光快速原型技術是一種非常簡單的模具或原型制造方法,采用激光掃描積分堆積塑料或金屬粉末直接制造模具型腔。激光快速原型技術的另外一種模具制造工藝是利用堆積的樹脂或紙質模型,采用精密鑄造或電鑄方法制造模具型腔。
這些方法制造的模具表面比較粗糙,精度較低,無法滿足生產模具的苛刻要求。
非常大批量生產用的模腔或其組件,容易磨損,快速模具技術將是一種非常有效的工藝手段。

