您好,歡迎來到易龍商務網!
發布時間:2020-12-07 09:49  
【廣告】





2QV-AF泡沫泵葉輪價格吸水室。吸水室的流道,一般的形式是收縮、 轉彎,有時容易出現死水
區。液體在吸水室內有沿程損失和旋渦損失,但因為吸水室內流速較慢,因此這部分水力損失所占的比重不大。
2)葉輪。葉輪存在三種損失:一是沿程損失;二是在工作點偏離工沉時,葉輪進口處的沖擊損失;三是兩相鄰葉片組成的擴散流道的擴散損失。
3) 壓水室。液體進入壓水室時有沖擊損失,有擴散、轉彎等損失。泵內液體在葉輪和壓水室中水力損失的比例很大。用比轉速ns =90的多級泵的節段為模型,進行水力損失分析,通過實驗測量,葉輪及壓水室中的水力損失如圖1-23所示。各部位的水力損失結果列于表1-1中。從表1-1可看出,葉輪和導葉中的水力損失幾乎是相等的。因此,應同等重視葉輪和導葉的設計。我公司具有先進的模型、鑄造、鍛造、焊接、機加工、熱處理、裝配、檢測試驗的綜合機械制造能力。導葉中的水力損失,轉彎處4-5的損失,因此在設計時應注意:一是減慢轉彎處的流速,二是轉彎不要太急。雖然在泵軸向由于軸向尺寸的限制,又是360°的轉彎,但在圓周方向是可以考慮如何降低水力損失的。2QV-AF泡沫泵葉輪價格
2QV-AF泡沫泵葉輪價格水力阻力系數入與間隙內液流的雷諾數有關。泄漏量q1未計算出來之前,雷諾數也無法求得。因此,通常采用逐次逼近法。
(2)多級泵級間的泄漏損失 級間的泄漏損失可以分為兩種: 種是不經過葉輪的泄漏損失;另種是經過一級或幾級葉輪的泄漏損失。
1) 不經過葉輪的泄漏量。這種泄漏(如分段式多級泵的級間泄漏量q2)如圖1-28所示,可用式(1-29) 計算。其中間隙兩端的壓力差AHmi可用式(1-30) 計算:
式中1H一單級揚程 (m)。
這種泄漏消耗的能量屬于圓盤損失的一部分,不是容積損失,考慮泵的容積效率時不計人。
2)經過一級或幾級葉輪的泄漏量。這是葉輪對稱布置時的級間泄漏損失。經過級葉輪的級間泄漏量q3如圖1-29所示,間隙兩端的壓力差為葉輪的單級揚程,
Hmi =H1。在這種情況下,經過兩個葉輪的理論流量不相等,流過第0一級葉輪的理論流量qvtI =qv q1,流過第二級葉輪的理論流量級間泄漏量q3也可用式(1-29) 計算。
3)軸向力平衡機構處的泄漏量。此泄漏量也可以進行計算由于內容較多,在此不進行詳細介紹。
3.容積效率的估計
(1)密封環間隙與密封環直徑的關系當 Dmi≤1000mm時,密封環間隙與密封環直徑之間存在以下關系為
式中 b---封密環半徑方向的間隙大小(m)
Dmi---密封環直徑(m)
2QV-AF泡沫泵葉輪價格

3. 轉子上葉輪固定方式和排列方式
1)每個葉輪單獨卡環定位,與軸過盈配合,且每一級葉輪內孔逐次減小0. 125mm、0. 15mm或0.20mm,便于裝配,每個葉輪過盈0.03 ~0. 06mm。這種葉輪與軸過盈配合最初源于此多級水平中開蝸殼泵,后來逐漸被節段式導葉泵所用。
2)轉子上葉輪排列方式很多,這里只介紹已定型的目常用的排列方式。
①泵葉輪個數為偶數時:葉輪個數在左右各一半, 即第組與第二組葉輪個數相同,如圖5-40a所示。
②泵葉輪個數為奇數時:
方式1:第級葉輪用雙吸,其余葉輪個數在左右各一半, 如圖5-40b 所示。當然首級葉輪設計成雙吸不一定就是為了平衡軸向力,主要是泵汽蝕性能的要求。
方式2:第組葉輪比第二組葉輪多一個( 見圖5-40c),中間加節流平衡套,特意將這種不大的軸向力設計成使之背離推力軸承,使軸處于受拉的狀況工作。這種泵運行更穩定,更可靠。
方式3:第二組葉輪比第組葉輪多 一個,如圖5-40d 所示。這種葉輪布置似乎沒有上述方式2布置方式好。從第組和第組來看,也是使軸受拉的,但從第二組與推力軸承這一段來看,軸是受壓的,這段軸是比較短的, 即是多1級的揚程產生軸向力,也不至于影響泵機組的穩定性,因為這種泵軸基本上都是剛性的。幫助客戶選擇價位性能比的產品,并可根據實際情況提出合理化建議。

