您好,歡迎來到易龍商務網!
發布時間:2020-12-16 05:39  
【廣告】






一六 熒光測厚儀 十年以上研發團隊 集研發生產銷售一體
元素分析范圍:氯(CI)- 鈾(U) 厚度分析范圍:各種元素及有機物
一次可同時分析:23層鍍層,24種元素 厚度檢出限:0.005um
xiao測量面積0.002m㎡ 深凹槽20mm以上鍍層厚度分析儀測量原理與儀器
一. 磁吸力測量原理鍍層厚度分析儀
磁鐵(測頭)與導磁鋼材之間的吸力大小與處于這兩者之間的距離成一定比例關系,這個距離就是覆層的厚度。利用這一原理制成測厚儀,只要覆層與基材的導磁率之差足夠大,就可進行測量。鑒于大多數工業品采用結構鋼和熱軋冷軋鋼板沖壓成型,所以磁性測厚儀應用廣。測厚儀基本結構由磁鋼,接力簧,標尺及自停機構組成。磁鋼與被測物吸合后,將測量簧在其后逐漸拉長,拉力逐漸增大。當拉力剛好大于吸力,磁鋼脫離的一瞬間記錄下拉力的大小即可獲得覆層厚度。新型的產品可以自動完成這一記錄過程。不同的型號有不同的量程與適用場合。準直器任意選擇或者任意切換最近測距光斑擴散度:9%測量距離:具有距離補償功能,可改變測量距離,能測量凹凸異型樣品,變焦距離0-30mm(特殊要求可以升級到90mm)樣品觀察:1/2。這種儀器的特點是操作簡便、堅固耐用、不用電源,測量前無須校準,價格也較低,很適合車間做現場質量控制。
二. 磁感應測量原理鍍層厚度分析儀
采用磁感應原理時,利用從測頭經過非鐵磁覆層而流入鐵磁基體的磁通的大小,來測定覆層厚度。也可以測定與之對應的磁阻的大小,來表示其覆層厚度。覆層越厚,則磁阻越大,磁通越小。利用磁感應原理的測厚儀,原則上可以有導磁基體上的非導磁覆層厚度。一般要求基材導磁率在500以上。如果覆層材料也有磁性,則要求與基材的導磁率之差足夠大(如鋼上鍍鎳)。當軟芯上繞著線圈的測頭放在被測樣本上時,儀器自動輸出測試電流或測試信號。早期的產品采用指針式表頭,測量感應電動勢的大小,儀器將該信號放大后來指示覆層厚度。近年來的電路設計引入穩頻、鎖相、溫度補償等地新技術,利用磁阻來調制測量信號。還采用專利設計的集成電路,引入微機,使測量精度和重現性有了大幅度的提高(幾乎達一個數量級)。鍍層是通過電鍍在機械制品上沉積出附著良好的,但性能和基體材料不同的金屬覆層。現代的磁感應測厚儀,分辨率達到0.1um,允許誤差達1%,量程達10mm。磁性原理測厚儀可應用來測量鋼鐵表面的油漆層,瓷、搪瓷防護層,塑料、橡膠覆層,包括鎳鉻在內的各種有色金屬電鍍層,以及化工石油待業的各種防腐涂層。
三. 電渦流測量原理鍍層厚度分析儀
高頻交流信號在測頭線圈中產生電磁場,測頭靠近導體時,就在其中形成渦流。測頭離導電基體愈近,則渦流愈大,反射阻抗也愈大。這個反饋作用量表征了測頭與導電基體之間距離的大小,也就是導電基體上非導電覆層厚度的大小。由于這類測頭專門測量非鐵磁金屬基材上的覆層厚度,所以通常稱之為非磁性測頭。非磁性測頭采用高頻材料做線圈鐵芯,例如鉑鎳合金或其它新材料。與磁感應原理比較,主要區別是測頭不同,信號的頻率不同,信號的大小、標度關系不同。X熒光光譜分析是一種非常常見的分析技術,二、應用領域X熒光光譜儀作為一種常見的分析技術手段,在現實生活中有著非常廣泛的應用,主要可以分為以下四大類:1。與磁感應測厚儀一樣,渦流測厚儀也達到了分辨率0.1um,允許誤差1%,量程10mm的高水平。
采用電渦流原理的測厚儀,原則上對所有導電體上的非導電體覆層均可測量,如航天航空器表面、車輛、家電、鋁合金門窗及其它鋁制品表面的漆,塑料涂層及陽極氧化膜。覆層材料有一定的導電性,通過校準同樣也可測量,但要求兩者的導電率之比至少相差3-5倍(如銅上鍍鉻)。雖然鋼鐵基體亦為導電體,但這類任務還是采用磁性原理測量較為合適。X射線和β射線法是無接觸無損測量,測量范圍較小,X射線法可測極薄鍍層、雙鍍層、合金鍍層。

一六儀器 專業測厚儀 多道脈沖分析采集,先進EFP算法 X射線熒光鍍層測厚儀
應用于電子元器件,LED和照明,家用電器,通訊,汽車電子領域.EFP算法結合精準定位決了各種大小異形多層多元素的涂鍍層厚度和成分分析的業界難題
定位方式:
1、移動平臺:
A、手動(普通和帶精密滑軌移動):裝配設計不同精準移位從0.5mm-0.005mm不等,移動的靈動性差距也很大。
B、電動(自動):裝配設計不同精準移位從0.2mm-0.002mm不等
但同樣的手動或者自動,其定位精準也相差很多。
2、高度定位:
A、手動變焦和無變焦
B、激光對焦和CCD識別對焦
薄膜是指在基板的垂直方向上所堆積的1~104的原子層或分子層。在此方向上,薄膜具有微觀結構。
理想的薄膜厚度是指基片表面和薄膜表面之間的距離。由于薄膜僅在厚度方向是微觀的,其他的兩維方向具有宏觀大小。所以,表示薄膜的形狀,一定要用宏觀方法,即采用長、寬、厚的方法。因此,膜厚既是一個宏觀概念,又是微觀上的實體線度。
由于實際上存在的表面是不平整和連續的,而且薄膜內部還可能存在著、雜質、晶格缺陷和表面吸附分子等,所以,要嚴格地定義和測量薄膜的厚度實際上是比較困難的。膜厚的定義應根據測量的方法和目的來決定。
經典模型認為物質的表面并不是一個抽象的幾何概念,而是由剛性球的原子(分子)緊密排列而成,是實際存在的一個物理概念。
形狀膜厚:dT是接近于直觀形式的膜厚,通常以um為單位。dT只與表面原子(分子)有關,并且包含著薄膜內部結構的影響;
質量膜厚:dM反映了薄膜中包含物質的多少,通常以μg/cm2為單位,它消除了薄膜內部結構的影響(如缺陷、、變形等);
物性膜厚:dP在實際使用上較有用,而且比較容易測量,它與薄膜內部結構和外部結構無直接關系,主要取決于薄膜的性質(如電阻率、透射率等)。
江蘇一六儀器有限公司是一家專注于光譜分析儀器研發、生產、銷售的高新技術企業。手動型設備,一般需要用人觀察圖像的方式,根據參考斑點的位置,手動上下調節Z軸方向,以達到準確對焦的目的。我們專業的研發團隊具備十年以上的從業經驗,經與海內外多名專家通力合作,研究開發出一系列能量色散X熒光光譜儀。穩定的多道脈沖分析采集系統、先進的解譜方法和EFP算法結合精準定位及變焦結構設計,解決了各種大小異形、多層多元素的涂鍍層厚度和成分分析的業界難題
目前,金屬鍍層常用的分析方法有濕化學電解分析、輝光放電---發射光譜分析(GD-OES)和X射線熒光光譜儀等。濕化學電解分析需選用適當溶劑溶解選定的鍍層,逐層溶解并進行測定,方法準確但費時費力,尤其是相關特定溶劑的選擇也非常復雜,價格又貴,屬于典型破壞性樣品檢測,測量手段手段繁瑣,速度慢,電解液耗損大,目前一般很少應用。通過定標器的脈沖分析信號可以直接輸入計算機,進行聯機處理而得到被測元素的含量。GD-OES方法用惰性原子逐層轟擊及剝離試樣表層,再用發射光譜測定,這種方法可實現剖面或逐層分析,但測量重復性并不理想。
