您好,歡迎來到易龍商務網!
發布時間:2021-09-13 21:21  
【廣告】
金屬發黑發藍處理--粉末冶金
金屬表面發黑(發藍)處理工藝
鋼制件的表面發黑處理,也有被稱之為發藍處理。發黑處理現在常用的方法有傳統的堿性加溫發黑和出現較晚的常溫發黑兩種。但常溫發黑工藝對于低碳鋼的效果不太好。A3鋼用堿性發黑好一些。
堿性發黑細分出來,又有一次發黑和兩次發黑的區別。
發黑時所需溫度的寬容度較大,大概在135攝氏度到155攝氏度之間都可以得到不錯的表面,只是所需時間有些長短而已。
實際操作中,需要注意的是工件發黑前除銹和除油的質量,以及發黑后的鈍化浸油。發黑質量的好壞往往因這些工序而變化。
金屬“發藍”
采用堿性氧化法或酸性氧化法;使金屬表面形成一層氧化膜,以防止金屬表面被腐蝕,此處理過程稱為“發藍”。
黑色金屬表面經“發藍”處理后所形成的氧化膜,其外層主要是四氧化三鐵,內層為氧化亞鐵。



金屬注射成型
金屬粉末射出成形是將細小、球狀的金屬粒子用各種不同的黏結劑混和并制造成小球的形狀成為射出料,再用射出成型機射出成型使用射出技術成形將金屬粉末,經由射出機將其射入模具中成形,再將其冶金燒結成固體的技術成形后的生胚,需經過脫脂的過程,把先前混入的黏結劑脫除,再經燒結,即得密度95%以上之高密度、高強度的產品簡而言之,即以塑料射出的方式去生產金屬制品 。一個實用的粘結劑一般由幾種組元組成,每種組元有各自獨特的功能,按照功能可以分為主要粘結劑、次要粘結劑和添加劑這幾種。
AIM(鋁合金粉末注射成形)工藝簡介
鋁合金粉末注射成形(Aluminium alloy injection moulding,簡稱AIM)是一種新型的鋁合金成形技術。
它類似于金屬粉末注射成形技術(MIM),是粉末注射成形(PIM)技術的主要分支,都是從注射成形技術上發展而來的,是目前國際上發展最快、應用最廣的鋁合金零部件加工技術。
AIM是先將粉末與粘結劑進行均勻混煉,然后將混合物料經造粒機造粒,再注射到成形模具腔完成所需要的形狀?;旌系娜垠w經過加溫有良好的流動性,這樣在注射時有助于制品成形,而且能充分保持產品的密度均勻性。經過成形的制品還需要脫脂再經燒結爐燒結,有的產品還要進行一些后處理。發黑時所需溫度的寬容度較大,大概在135攝氏度到155攝氏度之間都可以得到不錯的表面,只是所需時間有些長短而已。
這種先進的技術適合大批量、各種形狀復雜的零件生產,包括一些極其復雜的三維立體形狀,且生產的產品無需機加工或僅少量加工,大大降低了生產成本,而且使工作效率大大提高。
因注射過程都是經過精細的溫度和壓力進行注射,所以成形的制品具有極高的精度和非常均勻的密度。
AIM鋁合金注射成形技術能加工生產形狀極其復雜的零件,zui小可以加工0.1g的微小型零件;生產的產品組織均勻、精準度極高,表面光潔;而且生產的產品質量穩定,生產效率高,適于大批量生產。
由于AIM在精度和工作效率上表現出機加工無法比擬的優勢,目前已應用到航海航空、機械、汽車、精密儀器等多個行業。隨著機械工業的不斷發展,目前AIM已成為世界上鋁合金零部件加工領域發展最快的鋁合金加工技術,得到越來越多行業的青睞。


粉末微注射成形技術
近年來,微系統技術在各個領域的發展非常迅速,同時也對應用于微型工程中的三維微型復雜元器件的制造提出了更高的要求,希望微型器件在具備滿足使用要求性能的同時,能夠實現規?;a。微系統中主要的元器件包括微型模具、用于傳感器和jia速器上的微型機械結構、生物傳感器、微型流體元件、微型反應器等。這些元器件形狀復雜、體積微小,采用現有的微型加工技術如微型切削、激光切削、硅刻蝕技術等,生產效率低,無法開展大規模生產,而近年來在粉末注射成形基礎上發展起來的粉末微注射成形工藝為實現微型元器件規模化生產提供了zui具潛力的制備技術。一、第1把火——退火:1、退火是將工件加熱到適當溫度,根據材料和工件尺寸采用不同的保溫時間,然后進行緩慢冷卻,目的是使金屬內部組織達到平衡狀態,獲得良好的工藝性能和使用性能,或者為進一步淬火作組織準備。
粉末微注射成形技術是指針對尺寸小于1微米的零件在傳統粉末注射成形技術基礎上所開發的一種成形技術,主要應用于連續制造具有微觀結構表面與微型結構的零件,其基本工藝步驟與傳統的粉末注射成形基本相同,所制備零件的表面質量與孔隙度可通過選擇原始粉末與適宜的燒結條件來控制。與傳統粉末注射成形不同的是,粉末微注射成形為了便于制造微小結構,所選擇的粉末平均粒徑一般小于1~2微米;其次,由于粉末比表面積增大,需要粘度較低但有足夠強度的粘結劑,以利于微注射成形并避免生坯件脫模時損壞。另外,為了防止變形、裂紋及氣泡的產生,微注射成形技術對脫脂和燒結的工藝條件更加苛刻。對相互聯鎖現象的解釋仍然有爭議,但看起來可能是由于在由不規則顆粒壓制的壓坯中,在相當大程度上,相鄰顆粒之間形成了較好的原子接觸。
目前,國際上開展該技術研究的主要國家有德國、日本、新加坡、美國和英國。其中,德國開展并取得了突出的成果。國內的北京科技大學、中南大學以及大連理工大學也在該領域進行了一系列研究工作。如北京科技大學研制了具有自主知識產權、適用于傳統注射成形機的粉末微注射成形用模具;并以羰ji鐵粉和鐵鎳合金粉為原料,在傳統注射成形機上成功實現了粉末微注射成形齒頂圓直徑小于1毫米的微型齒輪。在傳動過程中,可由電機同步轉速,經彈性聯軸器至減速機后,由輸出裝置傳動快漿,使其達到規定的轉速,也可由變頻器進行調速。

