您好,歡迎來(lái)到易龍商務(wù)網(wǎng)!
發(fā)布時(shí)間:2021-09-26 20:12  
【廣告】





人工智能控制器
人工智能一直都處于計(jì)算機(jī)技術(shù)的前沿,經(jīng)歷了幾起幾落,長(zhǎng)久以來(lái),人工智能對(duì)于普通人來(lái)說(shuō)是那樣的可望而不可及,然而它卻吸引了無(wú)數(shù)研究人員為之奉獻(xiàn)才智,隨著現(xiàn)代控制理論的發(fā)展,控制器設(shè)計(jì)的常規(guī)技術(shù)正逐漸被廣泛使用的人工智能軟件技術(shù)所替代。不同的人工智能控制通常用完全不同的方法去討論。但AI控制器例如:神經(jīng)、模糊、模糊神經(jīng),以及遺傳算法都可看成一類(lèi)非線性函數(shù)近似器
誤差反向傳播技術(shù)是多層前聵ANN常用的學(xué)習(xí)技術(shù)。如果網(wǎng)絡(luò)有足夠多的隱藏層和隱藏結(jié)點(diǎn)以及適宜的激勵(lì)函數(shù),多層ANN只能實(shí)現(xiàn)需要的映射,沒(méi)有直接的技術(shù)選擇優(yōu)隱藏層、結(jié)點(diǎn)數(shù)和激勵(lì)函數(shù),通常用嘗試法解決這個(gè)問(wèn)題,反向傳播訓(xùn)練算法是基本的快下降法,輸出結(jié)點(diǎn)的誤差反饋回網(wǎng)絡(luò),用于權(quán)重調(diào)整,搜索優(yōu)。
使用常規(guī)反向轉(zhuǎn)波算法的ANN用于步進(jìn)電機(jī)控制算法的優(yōu)化。該方案使用實(shí)驗(yàn)數(shù)據(jù),根據(jù)負(fù)載轉(zhuǎn)矩和初始速度來(lái)確定大可觀測(cè)速度增量。這就需要ANN學(xué)習(xí)三維圖形映射。該系統(tǒng)與常規(guī)控制算法(梯形控制法)相比具有更好的性能,并且大大減少了定位時(shí)間,對(duì)負(fù)載轉(zhuǎn)矩的大范圍變化和非初始速度也有滿意的控制效果。
上一篇:烏當(dāng)區(qū)學(xué)校外墻清洗服務(wù)詢(xún)問(wèn)報(bào)價(jià)「永秀清潔」
返回列表
下一篇:蕪湖門(mén)診導(dǎo)診臺(tái)定制全國(guó)發(fā)貨 山東國(guó)之景放心選購(gòu)