您好,歡迎來到易龍商務網!
發布時間:2021-09-18 21:29  
【廣告】





人工智能控制器
建立相匹配的控制模型,同時根據數據實時反饋選擇控制方案,持續進化,給出優控制參數值。品投運后云端一鍵操作,的簡單背后是強大的算法支持:決策機TMAI可根據用戶設置的室溫目標數據,完成復雜運算后直接給出控制目標參數,如供水溫度等。決策機TMAI模型可以解決傳統控制模型中室溫數據滯后性問題,結合氣候參數提前預測、預知合理控制目標值,提前干預,平抑室溫波動。
人工智能控制器優勢
神“機”妙算:人工智能AI深度學習,超越傳統供熱經驗;
大數據處理,調控精細,預測準確,突破人的經驗盲區。
一鍵“智”能:傻瓜式操作,簡單,一鍵操作;
復雜的事情交給AI,用戶只需制定目標,操作簡單明了,降低培訓成本。
運“策”決機:無需額外設備,不用施工布線;
設備安裝簡單方便,通訊對接即可使用。
一勞永“逸”:的換熱站人工智能AI升級改造方式:
云平臺模式,免監控中心,一個采暖季可收回投資。
通過適當調整(根據響應時間、下降時間、魯棒性能等)它們能提。例如:模糊邏輯控制器的上升時間比優PID控制器快1.5倍,下降時間.5倍,過沖更小。它們比古典控制器的調節容易。在沒有必須知識時,通過響應數據也能設計它們。運用語言和響應信息可能設計它們。們有相當好的一致性(當使用一些新的未知輸入數據就能得到好的估計)
運用常規反向傳播學習算法。該系統由兩個子系統構成,一個系統通過電氣動態參數的辯識自適應控制定子電流,另一個系統通過對機電系統參數的辯識自適應控制轉子速度。后值得指出的是現在發表的大多數有關ANN對各種電機參數估計的,一個共同的特點是,它們都是用多層前饋ANNS,用常規反向傳播算法,只是學習算法的模型不同或被估計的參數不同。