您好,歡迎來到易龍商務網!
發布時間:2021-01-16 08:16  
【廣告】





MIN金屬注射成型
MIM(metal Injection Molding),中文名稱為金屬注射成型,是一種將金屬粉末與其粘結劑的增塑混合料,注射到模型里的成形方法。
簡單來說,MIM就是把金屬粉末和粘結劑均勻混合在一起,經過加工就能做成各種形狀的金屬器件了。
這是一種具有很高技術含量的技術,類似于現在熱門的3D打印。
從工藝流程來看,MIM要經歷混料(專用喂料)、注射成形、脫脂、燒結、后處理等5個步驟。
混料,就是把金屬粉末和粘結劑,按9:1的比例均勻混合起來,大家可以想象我們用水和面時的感覺。
等到和出來的面夠勁道時,就可以甩面做面條了,注射成形的步驟也差不多。
混合物被加熱,注入模具,成形為毛坯。毛坯出來后,再將里面的粘結劑去除,這一過程就叫脫脂。
脫脂后再進行高溫燒結,使成品的強度上一個臺階,并擁有很好的力學性能。
燒結是MIM工藝中最核心的環節,只要這一步處理得好了,那么整個MIM流程基本就大功告成了。
3
經過MIM制作出來的成品,密度高、精度高、表面光潔度也非常好,不信你摸一摸智能手表的底殼,質感那是杠杠滴。


粉末冶金生胚強度
粉末冶金生胚強度的概念粉末冶金生坯強度是指冷壓的粉末壓坯的機械強度。②、調整工件的機械性能,工件淬火后,硬度高,脆性大,為了滿足各種工件不同的性能要求,可以通過回火來調整,硬度,強度,塑性和韌性。粉末冶金零件生坯具有適當的強度是必要的,以便壓坯從陰模中脫出和將其運送到燒結爐而不會損壞。生坯強度取決于金屬粉末的種類與施加的壓力。軟金屬的粉末、不規則顆粒形狀或多孔性顆粒結構的粉末都具有較高的生坯強度。對于軟金屬,用較低的壓力即可生產出能夠進行搬運的壓坯。較硬的粉末則需要較高的壓力。
要理解粉末冶金生坯強度,就必須知道哪種力使金屬之間產生黏著。粘結劑是MIM技術的核心,MIM與常規粉末冶金方法相比的一個重要差異即粘結劑含量高。當使清潔的金屬表面相互接觸時,由于它們之間的接觸面積小,從而它們之間的黏著力小。施加壓力使接觸面積增大,不管顆粒形狀和表面粗糙度如何,這種接觸面積大體上正比于施加的壓力。對粉末冶金生坯強度的這種解釋就將重點放在了建立顆粒之間原子與原子的金屬接觸。如上所述,與球形顆粒粉末相比,不規則形狀顆粒壓制的壓坯具有較高的生坯強度。這種較高的強度來自于粉末冶金壓坯中不規則形狀顆粒之間的相互聯鎖。對相互聯鎖現象的解釋仍然有爭議,但看起來可能是由于在由不規則顆粒壓制的壓坯中,在相當大程度上,相鄰顆粒之間形成了較好的原子接觸。
粉末冶金工藝很適用于大批量生產這類的零件。六、金屬拉絲拉絲:是通過研磨產品在工件表面形成線紋,起到裝飾效果的一種表面處理手段。它可以為各種形狀復雜的零件生產設計且不浪費材料。不過,制造鐵框在技術上并非易事。在早期開發中,使用傳統潤滑劑,諸如硬脂酸鋅與EBS臘等進行過生產試驗,生坯廢品率高達50%。目前,有通過用溫壓提高生坯密度和通過采用模壁潤滑減少或消除混合粉中的潤滑劑的方法來提高生坯強度。


粉末冶金在零部件制造業地位不可取代
近幾年來,經濟的快速發展,帶動了一些零部件生產廠家的發展,粉末冶金是一項將材料和零件成形集于一體,不僅節能高效還能減少污染,節省材料,已經是現代工藝先進的制造技術。金屬注射成形(metalInjectionMolding,MIM)是一種適于生產小型、三維復雜形狀以及具有特殊性能要求制品的近凈成形工藝。粉末冶金在零件制造業中具有不可替代的地位和作用,已經成為零部件生產發展的前沿。
對于粉末冶金的材料的生產提出來了更高的要求,粉末冶金制品在一定的條件下逐漸的發展成熟,在冶金方法上由于粉末冶金具有制備工藝,結構組成等方面的獨特優越性,可以生產制造出良好的材料,此類材料在特殊應用中發揮非常大的作用,有著廣闊的應用前景。005%,隨著溫度升高,溶解度略有增加,在727度時達到峰值,也僅有0。粉末冶金制品一般用于制造高強度耐磨性強的零部件,在機械、電器,設備等有很大的用途,在汽車、機電、農機、電機中也有非常廣泛的用途。
隨著社會的日益發展,各個行業都取得了突飛猛進的發展,而推動行業發展巨大的助力則來源于高科技的大力支持。②可以消除網狀二次滲碳體,并使珠光體細化,不但改善機械性能,而且有利于以后的球化退火。例如,粉末冶金制品,雖然粉末冶金行業在市場上具有很大的發展潛力,應用領域也極其廣闊,但是這些因素并不能表示粉末冶金制品可以在競爭日漸加劇的生存環境中發展,在眾多粉末冶金制品中,只有擁有先進的技術,優質的服務,才能牢牢的抓住用戶的眼球,成為最受市場歡迎的一款粉末冶金制品。
粉末冶金是一門重要的零件成形技術,采用粉末冶金技術新型工藝的不斷出現,必將促進了產業的先進發展,也將為未來零部件的生產帶來光明的道路


荷蘭公司用金屬3D打印制造超級摩托車電機冷卻
荷蘭超級摩托車制造商Electric Superbike Twente與金屬3D打印公司K3D合作,為其電動自行車的電機生產新的冷卻外殼。較好的克服粉塵飛揚,減少配合劑的損失,改善產品質量與工作環境。這是Electric Superbike Twente使用的一款3D打印金屬組件,在此前的產品開發中,他們意識到使用傳統技術生產的電機冷卻外殼并不適合高性能摩托車,因此雙方在設計第二輛電動摩托車后不久就開始合作。
傳統制造的局限性
超級摩托車團隊的技術經理Feitse Krekt 評論說:“首輛超級摩托車的冷卻外殼由多個部件組成,這些部件使用傳統的生產方法,如車削和銑削,很難生產。對于這些生產方法,需要大量的材料,因此最終產品變得非常沉重。而且另外一個問題是,由于車削過程,壁厚需要高于常規,我們無法盡可能高效地冷卻電動機。所以,電機的功率低于預期,有時需要放慢速度以使電動機不會過熱。⑤馬氏體:鋼加熱到一定溫度(形成奧氏體)后經迅速冷卻(淬火),得到的能使鋼變硬、增強的一種淬火組織,常用M表示,馬氏體是體心正方結構。”
因此,超級摩托車決定聯系K3D,K3D是荷蘭一家從Additive Industries購買了metalFab1 金屬3D打印機的公司,自2016年以來已生產超過35,000種產品。
△用于生產冷卻外殼的metalFab1 3D金屬打印機
K3D的首席技術官Jaap Bulsink解釋說,使用K3D生產的部件使他們能夠享受傳統制造技術無法提供的設計自由,“由于采用薄壁設計,內部通道具有zui佳的冷卻性能,只有金屬3D打印才能實現極佳設計自由度。重要的是,該部件的設計重量最輕。該部件打印非常準確,無需任何后處理即可直接使用。粉末冶金齒輪是各種汽車發動機中普遍使用的粉末冶金零件,雖然在大批量的情況下是非常經濟實用的,不過在其他方面也有待改進的地方。”
這不是3D打印初次用于制造電動摩托車。總部位于德國的BigRep已經制造出功能齊全的3D打印電動摩托車,但該自行車僅用于設計目的,目前還不是一種可行的商業產品。另外,寶馬今年早些時候推出了3D打印概念車架,用于BMW S1000RR運動自行車。達克羅中含有對環境和人體有害的鉻離子,尤其是六價鉻離子具有致癌作用。
電動超級摩托車目前正在組裝,之后將于2019年5月24日在荷蘭恩斯赫德進行測試并最終曝光。

