您好,歡迎來到易龍商務網!
發布時間:2020-12-22 05:12  
【廣告】





換熱器作為油氣礦場初加工裝置主要的傳熱設備,換熱器運行情況的好壞,直接影響裝置的運行效率。由于受到檢修周期及有效檢測手段的限制,換熱器在運行過程缺乏對運行狀態的準確把握,換熱器不良運行狀態以及運行故障主要有以下幾種情況:壓降增大:造成原因主要包括:介質不潔凈或顆粒雜物太多,使板片或管束結塘或流道堵塞;受存在的非凝聚氣體影響;此外還和流體的流動速度有關,介質粘性越強、循環(流動)越慢,則壓降越大。介質內漏:換熱設備內的兩種介質由于某種原因造成高壓側介質向低壓側滲漏。油田原穩站油一油管殼式換熱器內部結構復雜,結構尺寸大,采用數值模擬研究時,對計算機配置要求較高,采用CFD前處理軟件很難對現場實際模型進行網格劃分,為便于研究分析,本課題在研究的過程中,對現場實際換熱器進行模型簡化處理。換熱器由于處于受壓力、介質腐燭性、流動磨燭,尤其是固定管板換熱器,還有溫差應力,管板與換熱管連接處極易泄漏,導致換熱器內漏。還有很多管殼式和板式換熱器經常發生滲漏,尤其是介質為循環水或水和高溫油類的碳鋼換熱器,泄漏頻繁,給生產帶來極大的安全隱患。泄漏:造成此原因多為密封塾片老化或者密封墊片材質選用不適,也可能是各夾緊螺桿的螺母松脫以及一些腐蝕性、氧化性很強旳物料長時間沖刷所至。結據:由于換熱器長期使用,在熱交換表面形成一定厚度的污塘或水據,增大了熱阻,從而降低了換熱器的傳熱效率。

但是由于換熱器大多體積龐大,內部結構復雜,模型的網格處理比較復雜,且對計算機的配置要求高,前人的研究分為兩種,首先是利用多孔介質模型,或者模擬換熱器理想模型。數值模擬與實驗方法相比具有如下優點:模擬能力強。計算機模擬技術既能模擬真實條件,又能模擬某些理想化的假定,拓寬了實驗研宄的范圍,便于分析各種情況下換熱器的運行特性,并減少了實驗的工作量。4mm,換熱器運行穩定時,管殼式換熱器殼程入u處的含砂率較高,大約在so%左右,殼程整體砂體積變化范圍在5%-20%之間,由于本次分析的砂粒徑較大,為0。數據完整。數值計算可以得出換熱器內部的流場、溫度場及壓力等參數的分布,據此,可以詳細分析換熱器內管束結構等布置的合理性、換熱器的換熱情況、換熱性能等。經濟性好。利用計算機軟件數值計算的費用遠遠低于實驗研究的費用。周期短。數值模擬所用的時間相對于實驗要少,方便從各種參數的匹配組合中快速選擇的方案。
運用熱力學能耗分析法,分析了管殼式污水換熱器中軟塘的厚度對換熱強度、流動壓降及其有效能損失的影響。通過工程實例,揖出了中等流速對系統節能和經濟性都有利,而當流速較低時需進行及時除塘。換熱器是油田化工和其他許多工業部門廣泛應用的一種通用工藝設備,其中管殼式換熱器在石油化工行業中應用尤為廣泛。對沉浸式污水換熱器的堵塞、結塘和腐燭問題進行了研究,建立了沉浸式污水換熱器的傳熱模型,并通過實驗驗證了模型的準確性;在污水流量變化的情況下,分別測試了沉浸式換熱器在冬、夏季的傳熱系數。
實測結果表明,采用高密度聚乙稀管的沉浸式污水換熱器單位長度的傳熱量約為100kw搭建板式換熱器冷卻水污據熱阻實驗臺,測得不同對間、流速和溫度下天然循環冷卻水(松花江水)中鐵離子、氯離子、細菌總數、值、溶解氧、池度、電導率等水質參數,隨機取一組實驗的水質參數作為輸入變量,建立換熱器冷卻水污振熱阻預測的偏二乘回歸模型,對板式換熱器的污塘熱阻進行預測。上海交通大學的曾偉平在研究板式換熱器的換熱和壓降過程中,先從單相流在板式換熱器流動出發,建立了單相的換熱和壓降模型,獲得某種具體板型的換熱及壓降關聯式系數,提出兩相流在板式換熱器中換熱的換熱關聯式和壓降公式。年,徐志明、李煌等人對比實驗研究了不同工況冷卻水入口溫度、流速下板式換熱器松花江冷卻水污拒特性,將污拒熱阻與這兩種運行參數進行了灰色關聯分析,并就運行參數對其結塘的影響逐一作了機理分析。。
譽金機械運用CFD數值模擬方法,借助FLUENT數值模擬軟件對管殼式換熱器的三維模型進行模擬,通過對換熱器結垢和泄漏時的速度場、溫度場等分析,得出泄漏和結垢對換熱器流動傳熱性能的影響,為下一步利用熱工參數評價換熱器結垢和泄漏提供理論依據。近年來,粗加工裝置換熱器內漏、結塘堵塞問題越來越突出,尤其換熱器,已嚴重影響裝置的平穩運行。主要內容如下:
1.管壁污垢對管殼式換熱器流動傳熱性能的影響規律研究。
(1)考慮管壁污垢傳熱的影響,建立管殼式換熱器的三維流動傳熱模型;
(2)研究油田原穩站用油一油管殼式換熱器運行過程中,含砂對換熱器殼程流場分布的影響,研究殼程流場內的含砂量分布情況;
(3)研究結垢厚度對管殼式換熱器流動傳熱性能的影響規律。
2.管殼式換熱器內部換熱面泄漏對換熱器流動傳熱性能的影響規律研究。
(1)建立管殼式換熱器換熱面泄漏的三維流動傳熱物理模型:
(2)研究泄漏口尺寸對管殼式換熱器流動傳熱性能的影響規律;
(3)研究泄漏口位置沿換熱器管長方向變化對管殼式換熱器流動傳熱性能的影響規律;
(4)研究泄漏口所在換熱管沿換熱器管徑方向變化對管殼式換熱器流動傳熱性能的影響規律;
(5)研究泄漏口數量對管殼式換熱器流動傳熱性能的影響規律。