您好,歡迎來到易龍商務網!
發布時間:2020-12-26 14:26  
【廣告】





新型生物脫氮技術(1)
新型生物脫氮技術(1)短程硝化反硝化技術。短程硝化反硝化是在同一個反應器中,先在有氧的條件下,利用氨氧化細菌將氨氧化成亞,阻止亞進一步氧化,然后直接在缺氧的條件下,以有機物或外加碳源作為電子供體,將亞進行反硝化生成氮氣。短程硝化反硝化與傳統生物脫氮相比具有以下優點:對于活性污泥法,可節省25%的供氧量,降低能耗;節省碳源,情況下可提高總氮的去除率;提高了反應速率,縮短了反應時間,減少反應器容積。但由于亞硝化細菌和硝化細菌之間關系緊密,每個影響因素的變化都同時影響到兩類細菌,而且各個因素之間也存在著相互影響的關系,這使得短程硝化反硝化的條件難以控制。目前短程硝化反硝化技術仍處在人工配水實驗階段,對此現象的理論解釋還不充分。(2)同時硝化反硝化技術。當硝化與反硝化在同一個反應器中同時進行時,即為同時硝化反硝化(SND)。廢水中溶解氧受擴散速度限制,在微生物絮體或者生物膜的表面,溶解氧濃度較高,利于好氧硝化菌和氨化菌的生長繁殖,越深入絮體或膜內部,溶解氧濃度越低,形成缺氧區,反硝化細菌占優勢,從而形成同時硝化反硝化過程。鄒聯沛等〔26〕對膜生物反應器系統中的同時硝化反硝化現象進行了研究,實驗結果表明,當DO 為1mg/L,C/N=30,pH=7.2時,COD、NH4 -N、TN 去除率分別為96%、95%、92%,并發現在的范圍內,升高或降低反應器內DO 濃度后,TN 去除率都會下降。
生物法傳統生物脫氮技術
生物法傳統生物脫氮技術傳統生物法是在各種微生物作用下,經過硝化、反硝化等一系列反應將廢水中的氨氮轉化為氮氣,從而達到廢水治理的目的。新型生物脫氮技術同時硝化反硝化(SND)短程消化反硝化厭氧氨氧化膜分離法膜分離法是利用膜的選擇透過性對液體中的成分進行選擇性分離,從而達到氨氮脫除的目的。包括反滲透、納濾和電滲析等。影響膜分離法的因素有膜特性、壓力或電壓、pH值、溫度以及氨氮濃度等。離子交換法離子交換法是通過對氨離子具有很強選擇吸附作用的材料去除廢水中氨氮的方法。土壤灌溉土壤灌溉是將低濃度氨氮廢水直接作為肥料使用的方法。對于有些含有病菌、重金屬、有機及無機等有害物質的氨氮廢水需經預處理將其去除后再進行灌溉。土壤灌溉要求氨氮濃度一般為幾十毫克每升。
碳氮比生物脫氮硝化與反硝化過程
硝化菌的適pH為 8.0~8.4,當pH值不在6.0~9.6范圍,即高于9.6或低于6.0時硝化反應將受到抑制而停止。對于反硝化過程而言,其適 pH為7.0~8.5。發生有效反硝化作用的pH范圍為6.0~8.5,當pH8.5時,反硝化效果受到影響,表現為反硝化速率的顯著下降。碳氮比生物脫氮硝化與反硝化過程實際上是一個對立的統一體,這是由硝化菌和反硝化菌的自身屬性決定的。硝化菌為自養微生物,代謝過程不需要有機物的參與,當存在高濃度有機物時,其對營養物質的競爭遠弱于異養菌而產生抑制效果,硝化反應會因硝化菌數量的減少而受到限制。所以,污水進水BOD5/TKN越小,硝化菌所占的相對比例就越大,這樣就越有利于硝化反應的發生。
氨氮廢水處理吹脫工藝特點
氨氮廢水處理吹脫工藝特點
吹脫工藝通常主要針對廢水中的氨氮濃度在2000mg/l以下:氨氮在水中以NH3和NH4 存在,它們之間存在如下平衡:NH3 H2O NH4 OH-平衡受PH影響,PH升高則水中的游離氨升高,平衡向右移動,游離氨的比例較大,當PH=7,氨氮大部分是以NH4 存在。當PH上升至11.5時,氨氮在廢水中98%是以游離氨存在。