您好,歡迎來到易龍商務網!
發布時間:2021-10-21 03:47  
【廣告】







經過多年的工作實踐和總結,作者認為此類防爆離心式風機產生異常振動的主要原因有:基礎因素、安裝精度不達標、風機葉輪不平衡、管道共振等。有時,振動是多個原因共同作用的,在實際工作中,應認真綜合分析,才能找到解決問題的辦法。離心風機廣泛應用于鍋爐引風、中央空調系統等多個領域,為人們的生產生活帶來了極大的便利。下面,作者就上文所列的振動因素及其處理措施進行分析和探討。
基礎因素及其檢查處理措施
防爆離心式風機基礎因素如基礎設計、施工不規范等造成風機振動往往被忽視。其實,基礎因素造成風機振動故障的事例并不少見,且其危害性很大。作為工程技術人員,首先要了解風機基礎的作用。風機基礎的作用有三個方面:
一是,根據生產工藝條件和設備安裝要求將風機牢固地固定在一定位置上;
二是,承受風機的全部重力以及工作時由于作用力產生的載荷,并將載荷均勻地傳布到地基;
三是,吸收和隔離因旋轉動力作用產生的振動,防止發生共振。
某車間防爆離心式風機至2016年止已運行近8 年,振動一直偏大,已困擾生產多年。即使是更新了葉輪總成,并在聯軸器對中性符合允差的情況下,運行時前后兩軸承位殼振實測振動速度有效值分別達到了3.0 mm/s 和3.6 mm/s 左右,這是屬于“可容忍”的范圍,但不宜長期運行工作。經我設備人員分析,認為振動大的原因有:一是混凝土基礎過于單薄,重量不足,且運行時基礎周圍地板有明顯的顫動;二是預埋地腳螺栓有松動跡象。經上級研究,決定趁當年大修時間充足的機會,對上述存在問題整改,破除舊基礎后,按本文前述處理措施重新設計、施工新的混凝土基礎和預埋地腳螺栓。綜合考慮計算精度和計算效率可知,當網格數為25萬左右時預測結果較為合理,最終確定整個計算域的網格數為2513558。
開機正常生產后,該防爆離心式風機軸承位殼振實測振動速度有效值分別降到了0.45 mm/s 和0.52 mm/s,屬“良好”級別。安裝精度不達標及其檢查處理措施安裝精度主要是指風機軸與驅動電機軸的同心度,即對中性。離心式風機聯軸器的同心度要求很高。如果聯軸器沒有找正,或是找正達不到要求,引起防爆離心式風機振動將不可避免。現場檢修人員反映,在打表過程中,徑向百分表下方讀數不時出現異常情況:電機墊高已經很明顯,但讀數卻不變或變小(當時百分表探頭打在風機端半聯軸器上,此情況下,如電機墊高,徑向百分表在下方讀數應增大)。應注意的是,即使原來同心度已經符合要求了,但是風機運行一段時間后,由于各種原因,同心度會也會發生變化,所以應注意定期檢查同心度,如發現同心度超過允許偏差了,要立即重新找正。因此,當風機發生異常的振動故障時,檢查聯軸器的對中情況是必不可少的。
防爆離心式風機葉片吸力側形成的低能流積聚的“尾跡區”,形成“射流-尾流”結構。加進氣箱后,風機葉輪尾緣處的“尾跡-射流”更加的嚴重,風機模型尾跡區占了比較大的空間,減少了風機流道有效面積。在小流量區,風機內部的流場分布發生偏心現象(C 處),葉輪流道E 側,氣體比較充實,葉輪流道F 側氣體分布較差,與原始風機內部流場分布相比,其防爆離心式風機葉輪流道的充盈性差。離心風機的效率曲線如圖6,無進氣箱情況下在流量為2.82kg/s,壓力為3 106.23Pa 時,達到較率68.64%;加進氣箱后在流量為1.68kg/s,壓力為2 775.54Pa,達到較率59.45%,通過與原始風機對比可知,加進氣箱后其較率降低8.19%。同樣由圖6 效率曲線對比圖可知,加進氣箱后風機整體效率降低,與原始防爆離心式風機相比其區域比較窄,縮短了工作區域,且加進氣箱后較優工況點向小流量區偏移。加進氣箱后,離心風機的全開流量降低,與無進氣箱相比,流量降低了16.9%。對比分析改型前后風機數值模擬計算和試驗測量結果可知,采用修改的k-ε模型進行計算發現改型后風機內旋渦強度減小,蝸殼出口靠近蝸舌處流動分離得到改善。由圖7 可知,加進氣箱不僅降低了風機的全開流量,其全壓也有所減少。風機性能測試采用C 型試驗裝置對帶進氣箱的離心風機進行了性能測試,測試標準按GB/T 1236-2017《工業通風機用標準化風道進行性能實驗》執行。