您好,歡迎來到易龍商務網!
發布時間:2021-10-03 23:26  
【廣告】





人工智能控制器
運用常規反向傳播學習算法。該系統由兩個子系統構成,一個系統通過電氣動態參數的辯識自適應控制定子電流,另一個系統通過對機電系統參數的辯識自適應控制轉子速度。后值得指出的是現在發表的大多數有關ANN對各種電機參數估計的,一個共同的特點是,它們都是用多層前饋ANNS,用常規反向傳播算法,只是學習算法的模型不同或被估計的參數不同。
但都沒有使用人工智能技術。相信使用人工智能的直流傳動技術能得到進一步的提高。智能技術在電氣傳動技術中占相當重要的地位,特別是自適應模糊神經元控制器在性能傳動產品中將得到廣泛應用。但是,還有很多研究工作要做,現在還只有少數實際應用的例子(學術研究組實現少,工業運用的就更少了),大多數研究只給出了理論或結果
總而言之,當采用自適應模糊神經控制器,規則庫和隸屬函數在模糊化和反模糊化過程中能夠自動地實時確定。,隨著現代控制理論的發展,控制器設計的常規技術正逐漸被廣泛使用的人工智能軟件技術所替代。不同的人工智能控制通常用完全不同的方法去討論。但AI控制器例如:神經、模糊、模糊神經,以及遺傳算法都可看成一類非線性函數近似器。
能模仿人的決策和推理模糊控制行為。反模糊化實現量化和反模糊化。有很多反模糊化技術,例如,大化反模糊化,中間平均技術等。輸出結點的權重調整迭代不同于隱藏結點的權重調整迭代。通過使用反向傳播技術,能得到需要的非線性函數近似值,該算法包括有學習速率參數,對網絡的特性有很大影響。些模糊控制器不僅用來取代常規的PI或PID控制器,同時也用于其他任務