您好,歡迎來到易龍商務網!
發布時間:2020-11-04 03:06  
【廣告】





數碼電子MIM注射陶瓷未來發展和趨勢
MIM注射成型助力數碼電子設備精密零件發展的同時,也促進了粉末冶金行業經濟的增長,目前粉末冶金注射成型主要還是應用不銹鋼、鐵、銅、鋁等金屬零件材質,陶瓷以及鈦合金材質相對來說少很多,
MIM陶瓷手機后蓋
一:數碼電子注射陶瓷未來發展和趨勢
1:高質量的手機背板注塑用陶瓷喂料已取得突破,喂料的均勻性和穩定性可保證;
2:隨著5G通訊的臨近和對非金屬材料背板的需求,陶瓷注塑手機背板將逐漸進入智能手機終端市場,成為未來陶瓷背板的主流制備技術之一。
3:智能穿戴外觀件基本都已采用陶瓷注塑,例如可無線充電的蘋果手表陶瓷背蓋,華米手表陶瓷表圈;
4:高精度凈尺寸陶瓷背板的連續化注塑生產線已開發,其產能和效率高于其他工藝;
5:新開發的注塑陶瓷材料的抗沖擊強度和斷裂韌性已大幅提高,高于玻璃背板,而且具有更高的硬度和耐磨性。


數碼電子發展速度非常快,對于精密零件的性能以及外形復雜程度的需求也是越來越高,MIM注射成型技術也在不斷的發展和進步,助力各行各業的發展,聚鑫MIM已自主研發了5000多個粉末冶金結構件,涵蓋汽車、家電、五金、數碼電子、醫用器材,5G通訊等領域。在小批量生產的情況下,粉末冶金齒輪的生產成本可能比傳統制造方法的成本高。
粉末冶金行業發展勢不可擋
粉末冶金屬于現代工業發展的朝陽產業,以制取金屬或用金屬粉末(或金屬粉末與非金屬粉末的混合物)作為原料,經過成形和燒結,制造金屬材料、復合以及各種類型制品的工藝技術。
我國粉末冶金行業起步較晚,但發展迅猛,特別是汽車行業、機械制造、金屬行業、航空航天、儀器儀表、五金工具、工程機械、電子家電及高科技產業等迅猛發展,為粉末冶金行業帶來了較大的發展機遇。
具體數據顯示,1948年我國硬質合金產量僅有2-3萬噸,但2000年后我國粉末冶金市場迅速崛起。2009年我國粉末冶金行業產量為11.30萬噸,超過日本躍居亞洲首位。☆材料對于像鈦、不銹鋼及鎳合金之類難切削加工的材料設計的零件,MIM最有吸引力。2014年粉末冶金行業銷量達19.18萬噸,2017年增長至20.08萬噸,增幅為4.7%。
從應用領域來看,現階段,我國粉末冶金產品主要應用于汽車、家電、電動工具、摩托車、農業機械及工程機械等工業。隨著我國汽車行業的快速發展,粉末冶金制品本土化需求不斷擴大,2016年,應用于汽車方面的粉末冶金零件共10.09萬噸,占比54.69%,同比上升6.55%。達克羅涂層的表面顏色單一,只有銀白色和銀灰色,不適合汽車發展個性化的需要。未來下游產業的發展將會繼續拉動上游產業的發展,整個行業的容量仍在不停擴大。
汽車領域應用較少,技術相對落后
在發達國家如美國、歐洲、日本,粉末冶金產品主要應用于汽車領域,汽車粉末冶金產品占粉末冶金總產品的比例高達80%以上,其產品包括VVT(可變氣門正時系統)、VCT(可變氣門凸輪軸正時系統)、各類泵組件、鏈輪、同步環、行星齒輪等,種類覆蓋十分齊全。達克羅涂層的導電性能不是太好,因此不宜用于導電連接的零件,如電器的接地螺栓等。
而在我國,2017年,粉末冶金市場汽車應用占比僅為60%。我國粉末冶金汽車零件占比遠低于發達國家,占比提升潛力大。
單車用量方面,中國提升空間同樣相對可觀。2017年,北美粉末冶金零件單車用量可達18.6Kg,日本為8.0Kg,歐洲為7.2Kg,而中國僅為4.5Kg。自1916年出現真正意義上的Banbury(本伯里)型密煉機后,密煉機的威力逐漸被人們所認識,它在橡膠混煉過程中顯示出來比開煉機優異的一系列特征,如:混煉容量大、時間短、生產效率高。這種差距產生的主要原因是,我國國內很多粉末冶金產品達不到要求的尺寸公差與性能參數,因此,汽車主機廠只能選擇成本更高的鍛造零件與機加工零件。
國內企業成本優勢顯著,進口替代空間廣闊
與國外公司相比,國內企業在人力成本、土地成本、原料成本等方面均具有優勢,能夠為主機廠與一級供應商提供更低價的粉末冶金產品。同時,國內企業交貨周期短,售后服務快速、及時,能夠為國內主機廠提供更優質的服務。
從技術角度來看,2015年,發布《中國制造2025》的通知,其中重點提出要大力發展智能制造、增材制造、新材料、生物醫用等領域。我們認為在國家政策的大力扶持下,國內粉末冶金技術有望得到快速發展,替代市場逐步由低端轉向高技術。
另外,專利申請授權量的持續增長彰顯粉末冶金技術的不斷成熟。2016年,我國鑄造、粉末冶金專利申請授權量為8295項,同比增長11.62%,近五年(2012-2016年)復合增長率為16.02%。
綜合來看,國內粉末冶金產品進口替代空間十分廣闊


AIM(鋁合金粉末注射成形)工藝簡介
鋁合金粉末注射成形(Aluminium alloy injection moulding,簡稱AIM)是一種新型的鋁合金成形技術。
它類似于金屬粉末注射成形技術(MIM),是粉末注射成形(PIM)技術的主要分支,都是從注射成形技術上發展而來的,是目前國際上發展最快、應用最廣的鋁合金零部件加工技術。
AIM是先將粉末與粘結劑進行均勻混煉,然后將混合物料經造粒機造粒,再注射到成形模具腔完成所需要的形狀。混合的熔體經過加溫有良好的流動性,這樣在注射時有助于制品成形,而且能充分保持產品的密度均勻性。美國Injectamax公司和德國BASF公司將脫脂時間從數十小時縮短到幾個小時,而且保形性得到明顯改善,產品的尺寸精度從±0。經過成形的制品還需要脫脂再經燒結爐燒結,有的產品還要進行一些后處理。
這種先進的技術適合大批量、各種形狀復雜的零件生產,包括一些極其復雜的三維立體形狀,且生產的產品無需機加工或僅少量加工,大大降低了生產成本,而且使工作效率大大提高。
因注射過程都是經過精細的溫度和壓力進行注射,所以成形的制品具有極高的精度和非常均勻的密度。
AIM鋁合金注射成形技術能加工生產形狀極其復雜的零件,zui小可以加工0.1g的微小型零件;生產的產品組織均勻、精準度極高,表面光潔;而且生產的產品質量穩定,生產效率高,適于大批量生產。
由于AIM在精度和工作效率上表現出機加工無法比擬的優勢,目前已應用到航海航空、機械、汽車、精密儀器等多個行業。隨著機械工業的不斷發展,目前AIM已成為世界上鋁合金零部件加工領域發展最快的鋁合金加工技術,得到越來越多行業的青睞。


金屬粉末增塑擠壓成型與注射成形工藝比較
粉末冶金技術發展到今天已經有了不少的分支和不同的工藝,在這其中zui具有代表性的兩種工藝非增塑擠壓成型和注射成形莫屬了,雖然同屬于粉末冶金,但是它們又有很多不同,今天就讓小編帶大家一起來了解一下吧。
先來看看金屬粉末增塑擠壓成形工藝,這是一種在金屬粉末包套擠壓等工藝的基礎上發展而來的,可以在較低的溫度下對具有優良流動性的銅、鎢、硬質合金、高熔點金屬間化合物以及陶瓷材料進行擠壓成形的新工藝。目前該工藝已經有了專用的連續擠壓設備。20世紀80年代,美國倫賽爾理工學院開始開展MIM技術理論基礎和應用基礎的研究工作。該工藝過程使用的物料是添加了一定量增速劑的具有優良流動性的金屬粉末。利用該工藝生產的坯件,在經過干燥、燒結之后就可以成為最終成品了。
再來看一下另外一種新型的金屬零部件成形工藝—金屬注射成形。它是將傳統的粉末冶金和現代塑料注塑技術相結合并依托于粘結劑配方研發和喂料生產技術的一種近凈成形工藝。4)外部加熱汽化系統,改變了過去液體滴酸的干擾,提升了脫脂效率。它是一種發展歷史久遠但發展速度緩慢的成形工藝,該工藝的基本流程就是將金屬粉末和粘結劑的混合物在一定的溫度和壓力條件xia注入特定的模腔中得到接近最終產品尺寸和形狀的坯件,再對坯件進行脫粘、燒結得到具備一定機械性能的最終成品的過程。
通過以上的描述可以看出,粉末增塑擠壓成形與注射成形有很多相同的優點,所以近幾年這兩種工藝都得到了迅猛發展,兩者共同的優點總結一下有四點:近凈成形,都可以一次成形最接近制品最終形狀的坯件;利用傳統的鑄造、機加工等防范難以生產的形狀的金屬制品,尤其是小型復雜零件和細長零件的成形中占有很大優勢;可適用的材料范圍都相當廣泛,一些用常規辦法不好制備成品的材料都可以采用此兩種方法;該兩種方法可以作為新材料及其產品的新的研發方法。69%,熔點約為1227度,晶體結構復雜,硬度很高,脆性極大,幾乎沒有塑性。
兩者一個顯著共同點是都要使用粘結劑。從粘結劑的選用及配方上來看,兩者采用的粘結劑都可以歸為三大體系,蠟基、jia基纖維素基和塑基,用量上也差不多,都在在8%~20%的質量比范圍。從工藝上來看,都要在坯件成形以后進行粘結劑的徹底脫除。
但是兩者也有很明顯的不同,在原料上,增塑擠壓成形使用的金屬粉末粒度變化區間比較大,從幾微米到幾百微米都可以使用;而金屬注射成形對金屬粉末的要求比較高,粉末的粒度一般在0.5-20微米之間,對粉末制備方法和粉末形狀有著更高的要求,因此成形后的制品更致密,燒結時收縮率小,尺寸精度更高。一、第1把火——退火:1、退火是將工件加熱到適當溫度,根據材料和工件尺寸采用不同的保溫時間,然后進行緩慢冷卻,目的是使金屬內部組織達到平衡狀態,獲得良好的工藝性能和使用性能,或者為進一步淬火作組織準備。
如果要說兩者的差異的話,成形設備和物料受力的的不同是其另外一個顯著的區別,增塑擠壓成形采用的是專用螺桿擠壓成形機,物料處于兩向壓縮和一向擠出拉伸的變形,其中的擠壓力一般不會超過300Mpa;而注射成形采用的注射成形機,在成形過程中物料受到的是三向壓應力,其變形是三向力的壓縮變形。當使清潔的金屬表面相互接觸時,由于它們之間的接觸面積小,從而它們之間的黏著力小。
通過兩者共同點和不同點的比較,我們認識到,兩者都是當今粉末冶金技術新的發展方向,都可以在成形難加工材料的小尺寸復雜形狀制品方面發揮優勢,如果在精密度要求不是特別高的情況下可以采用增塑擠壓成形工藝以降低生產成本,而精密度要求高的制品的成形則只能通過對粉末粒度要求嚴格的金屬粉末注射成形來實現。與機加工工藝相比,粉末冶金齒輪的經濟批量一般取決于零件的大小、結構復雜程度、產品要求精度以及其它性能要求。

