您好,歡迎來到易龍商務網!
發布時間:2020-12-22 03:21  
【廣告】






齒輪類零件加工
齒輪是能彼此符合的有齒的機械零件,齒輪傳動可完成減速、增速、變向等功能。它在機械傳動及整個機械領域中運用極其廣泛。本文對齒輪類零件的加工工藝做歸納總結。
1
齒輪的功用、結構
齒輪雖然由于它們在機器中的功用不同而規劃成不同的形狀和尺度,但總可劃分為齒圈和輪體兩個部分。常見的圓柱齒輪有以下幾類(下圖):盤類齒輪、套類齒輪、內齒輪、軸類齒輪、扇形齒輪、齒條。其中盤類齒輪運用廣。
圓柱齒輪的結構方法
一個圓柱齒輪能夠有一個或多個齒圈。普通的單齒圈齒輪工藝性好;而雙聯或三聯齒輪的小齒圈往往會遭到臺肩的影響,約束了某些加工辦法的運用,一般只能選用插齒。假如齒輪精度要求高,需求剃齒或磨齒時,一般將多齒圈齒輪做成單齒圈齒輪的組合結構。
2圓柱齒輪的精度要求
齒輪本身的制作精度,對整個機器的工作性能、承載能力及運用壽命都有很大影響。根據齒輪的運用條件,對齒輪傳動提出以下幾方面的要求:
1.
運動精度
要求齒輪能準確地傳遞運動,傳動比安穩,即要求齒輪在一轉中,轉角差錯不超越一定范圍。
2,
工作平穩性
要求齒輪傳遞運動平穩,沖擊、振蕩和噪聲要小。這就要求約束齒輪轉動時瞬時速比的改變要小,也就是要約束短周期內的轉角差錯。
3.
觸摸精度
齒輪在傳遞動力時,為了不致因載荷分布不均勻使觸摸應力過大,引起齒面過早磨損,這就要求齒輪工作時齒面觸摸要均勻,并確保有一定的觸摸面積和符合要求的觸摸位置。
4.
齒側空隙
要求齒輪傳動時,非工作齒面間留有一定空隙,以儲存潤滑油,補償因溫度、彈性變形所引起的尺度改變和加工、安裝時的一些差錯。
3齒輪的資料
齒輪應按照運用的工作條件選用適宜的資料。齒輪資料的挑選對齒輪的加工性能和運用壽命都有直接的影響。
一般齒輪選用中碳鋼(如45鋼)和低、中碳合金鋼,如20Cr、40Cr、20CrMnTi等。2要求較高的重要齒輪可選用38CrMoAlA氮化鋼,非傳力齒輪也能夠用鑄鐵、夾布膠木或尼龍等資料。
4齒輪的熱處理
齒輪加工中根據不同的意圖,組織兩種熱處理工序:
毛坯熱處理
在齒坯加工前后組織預先熱處理正火或調質,其首要意圖是消除鑄造及粗加工引起的剩余應力、改善資料的可切削性和進步歸納力學性能。
2.
齒面熱處理
齒形加工后,為進步齒面的硬度和耐磨性,常進行滲碳淬火、高頻感應加熱淬火、碳氮共滲和滲氮等熱處理工序。
5齒輪毛坯
齒輪的毛坯方法首要有棒料、鍛件和鑄件。棒料用于小尺度、結構簡單且對強度要求低的齒輪。當齒輪要求強度高、耐磨和耐沖擊時,多用鍛件,直徑大于400~600mm的齒輪,常用鑄造毛坯。
為了削減機械加工量,對大尺度、低精度齒輪,能夠直接鑄出輪齒;關于小尺度、形狀復雜的齒輪,可用精細鑄造、壓力鑄造、精細鑄造、粉末冶金、熱軋和冷擠等新工藝制作出具有輪齒的齒坯,以進步勞動出產率、節省原資料。
6齒坯的機械加工計劃的挑選
關于軸齒輪和套筒齒輪的齒坯,其加工進程和一般軸、套基本相似,現首要討論盤類齒輪齒坯的加工進程。齒坯的加工工藝計劃首要取決于齒輪的輪體結構和出產類型。
1 大批很多出產的齒坯加工
大批很多加工中等尺度齒坯時,多選用“鉆一拉一多刀車”的工藝計劃。
(1)以毛坯外圓及端面定位進行鉆孔或擴孔。
(2)拉孔。
(3)以孔定位在多刀半自動車床上粗精車外圓、端面、切槽及倒角等。
這種工藝計劃由于選用機床能夠組成流水線或自動線,所以出產。
成批出產的齒坯加工
成批出產齒坯時,常選用“車一拉一車”的工藝計劃
(1)以齒坯外圓或輪毅定位,精車外圓、端面和內孔。
(2)以端面支承拉孔(或花鍵孔)。
(3)以孔定位精車外圓及端面等。
這種計劃可由臥式車床或轉塔車床及拉床實現。它的特點是加工質量安穩,出產效率較高。
當齒坯孔有臺階或端面有槽時,能夠充分利用轉塔車床上的多刀來進行多工位加工,在轉塔車床上一次完成齒坯的加工。
7輪齒加工辦法
齒輪齒圈的齒形加工是整個齒輪加工的中心。齒輪加工有許多工序,這些都是為齒形加工服務的,其意圖在于終究獲得符合精度要求的齒輪。
按照加工原理,齒形可分為成形法和展成法。成形法是用與被切齒輪齒槽形狀相符的成形刀具切出齒面的辦法,如銑齒、拉齒和成型磨齒等。
展成法是齒輪刀具與工件按齒輪副的嚙合關系作展成運動切出齒面的辦法,如滾齒、插齒、剃齒、磨齒和珩齒等。
齒形加工計劃的挑選,首要取決于齒輪的精度等級、結構形狀、出產類型及出產條件,關于不同的精度等級的齒輪,常用的齒形加工計劃如下:
(1)8級精度以下齒輪
調質齒輪用滾齒或插齒就能滿足要求。關于淬硬齒輪可選用:滾(插)齒—齒端加工—淬火—校對孔的加工計劃。但淬火前齒形加工精度應進步一級。
(2)6-7級精度齒輪
關于淬硬齒輪可選用:粗滾齒—精滾齒—齒端加工—精剃齒—外表淬火—校對基準—珩齒。
(3)5級精度以上齒輪
一般選用:粗滾齒—精滾齒—齒端加工—淬火—校對基準—粗磨齒—精磨齒。磨齒是現在齒形加工中精度蕞高,外表粗糙度值蕞小的加工辦法,蕞可達3-4級。
銑齒
齒輪精度等級:9級以下
齒面粗糙度Ra:6.3~3.2μm
適用范圍:單件修配出產中,加工低精度的外圓柱齒輪、齒條、錐齒輪、蝸輪
拉齒
齒輪精度等級:7級
齒面粗糙度Ra:1.6~0.4μm
適用范圍:大批量出產7級內齒輪,外齒輪拉刀制作復雜,故少用
滾齒
齒輪精度等級:8~7級
齒面粗糙度Ra:3.2~1.6μm
適用范圍:各種批量出產中,加工中等質量外圓柱齒輪及蝸輪
插齒
齒面粗糙度Ra:1.6μm
適用范圍:各種批量出產中,加工中等質量的內、外圓柱齒輪、多聯齒輪及小型齒條
5.
滾(或插)齒—淬火—珩齒
齒面粗糙度Ra:0.8~0.4μm
適用范圍:用于齒面淬火的齒輪
刀具的涂層技術
刀具的涂層技能,有用,要轉發收藏!
1.刀具涂層的特點
?。?)力學和切削功用好。涂層刀具將基體資料和涂層資料的優良功用結合起來,既堅持了基體良好的韌性和較高的強度,又具有涂層的高硬度、高耐磨性和低沖突系數。因而,涂層刀具的切削速度與未涂層的相比,切削速度可進步2~5倍,運用涂層刀具能夠獲得明顯的經濟效益。
?。?)通用性強。涂層刀具通用性廣,加工范圍明顯擴展,一種涂層刀具能夠替代數種非涂層刀具運用,因而能夠大大削減刀具的品種和庫存量,簡化刀具管理,下降刀具和設備本錢。
2.涂層的分類
依據涂層辦法不同,涂層刀具可分為化學氣相堆積涂層刀具、物理氣相堆積,涂層刀具及混合工藝及組合技能。CVD涂層原理如圖1a所示,PVD涂層原理如圖1b所示?;旌瞎に囀堑入x子輔助CVD技能與傳統的PVD技能進行有用的結合。比如先堆積傳統的CrN硬質涂層,再在上面堆積一層用于削減沖突的DLC涂層。組合技能是涂層前對東西或零部件的外表層進行氮化,能夠進步涂層的成效。
CVD能夠涂覆耐磨損性優異的TiCN、耐熱性非常優異的Al2O3厚膜,因而在發生高溫的高速、率切削加工中能顯示出長壽命,CVD涂層如圖2a所示。
PVD一般用在與無涂層硬質合金、高速鋼相同或較高速的切削速度條件下,以延常刀具壽命為方針。對基體制約少、損傷小,因而特別適合用于要求耐磨損性、耐崩刃性的刀具,也適用于要求鋒利刃口的低進給加工與精加工或螺紋加工東西等,PVD涂層如圖2b所示。
依據涂層刀具基體資料的不同,涂層刀具可分為硬質合金涂層刀具、高速鋼涂層刀具以及在陶瓷和超硬資料(金剛石和立方氮化硼)上的涂層刀具等。涂層硬質合金刀具一般選用化學氣相堆積法,堆積溫度在1 000℃左右。涂層高速剛刀具一般選用物理氣相堆積法,堆積溫度在500℃左右。
金剛石涂層選用CVD(化學蒸鍍法)在硬質合金基體上組成。組成的涂層具有與天然金剛石相匹敵的硬度與導熱系數,在非鐵資料的加工中發揮著優異的功用。金剛石涂層刀具由于其良好的切削功用,在切削加工范疇具有廣闊的使用前景,是加工石墨、金屬基復合資料、高硅呂合金及許多其他耐磨蝕資料的理想刀具,目前其主要使用范疇是轎車和航空航天工業。金剛石涂層刀具的組織如圖3所示。
依據涂層資料的性質,涂層刀具又可分為兩大類,即“硬”涂層刀具和“軟”涂層刀具。“硬”涂層刀具尋求的主要方針是高的硬度和耐磨性,其主要長處是硬度高、耐磨性好,典型的是TiC和TiN涂層,各種涂層刀具如圖4所示?!败洝蓖繉拥毒呤沁x用固體潤滑劑如MoS2、WS2等制備的刀具,“軟”涂層尋求的方針是低沖突系數,也稱為自潤滑刀具,它與工件資料的沖突系數很低,只有0.1左右,可減小粘、減輕沖突、下降切削力和切削溫度。
對刀具進行涂層處理是進步刀具功用的重要途徑之一,涂層刀具的出現,使刀具切削功用有了較大的進步,使用范疇不斷擴展,涂層刀具在數控加工范疇有巨大潛力,將是往后數控加工范疇中重要的刀具品種。目前國外硬質合金可轉位刀片的涂層份額在70%以上,歐洲齒輪刀具的涂層份額高達90%。涂層技能已使用于立銑刀、鉸刀、復合孔加工東西、齒輪滾刀、剃齒刀、成形拉刀及各種機夾可轉位刀片,滿意高速切削加工各種鋼和鑄鐵、耐熱合金和有色金屬等資料的需求。
3.涂層刀具的制備
精密東西、零部件和功用件的新式高功用涂層都是由涂層爐出產出來的。由于不同的使用需求不同品種的涂層,且需求快速的交貨期,因而涂層爐有必要要有滿足的靈活性,以保證出產不同系列的涂層都能有蕞佳的本錢效益?,F代化的涂層設備能夠在金屬、陶瓷乃至是塑料的外表進行快速、穩定且全自動的涂層?,F代涂層設備有必要滿意以下原則:①單爐時間短。②日常運營本錢低。③靈活性高。④設備保養和備件費用本錢規劃低。⑤出產可靠性高。⑥全自動操作。⑦CE認證,工作安全標準高。
4.涂層的選用
為了更好地挑選和開展刀具及零部件的蕞佳成效,需求辨別其主要及特定的磨損性和失效機理。磨損、粘附、腐蝕和疲憊都視為磨損機理,而且都取決于實踐的使用。經歷指出,資料的沖突和磨損都不是資料的原因,而是整個系統的原因。因而,在挑選涂層前就有必要分析整個沖突系統,包括零部件的技能功用、抗壓力范圍以及磨損機理的類型。
5.結語
正確選用涂層是合理運用涂層刀具和充分發揮涂層功用的前題?,F在的涂層主要是以TiN和CrN為主。當然DLC涂層和用于鋁壓鑄模具的新式微合金涂層的使用也越來越廣泛。在曩昔幾十年間,為了滿意對功用涂層不斷的要求,工業等離子外表技能獲得了十分迅猛的開展。面向未來,新的挑戰也會推進現行的涂層技能和新涂層概念及其使用向更先進的方向開展。經過使用新的蒸發設備和濺射理念以及脈沖技能,電弧PVD和濺射工藝也將愈加先進。經過選用超高密度的等離子體和優化的電弧蒸發技能能夠生成微合金涂層和專用規劃的多結構涂層。涂層的納米規劃也將成為東西開展方向之一。
機械加工進程中,孔的加工一向都是整個加工工程中的要點和難點,通常會用到鉆頭、鉆夾頭、鉸刀,珩磨棒等加工刀具,起浮夾具一般業界說的比較少,但常常聽工人師傅說起浮夾頭,那么什么是起浮夾具呢?
起浮夾具(Floating holder)是指東西可以沿平行于東西軸線的軸向起浮或沿筆直空間內角度搖擺或一起具有這2種起浮。
為什么要運用起浮夾具?
在機械零部件制造進程中經常有很多的、高外表質量的孔加工需求,而孔加工一向都是機械加工中的難點和要點,鉆孔,鉸孔后運用高精密珩磨加工無疑是一種重要和常見的加工辦法。
在單沖程珩磨工藝中,對精度保持高水準加工的一起,還要在單次往復中完成包括外表粗糙度,圓柱度等一系列精度的加工,其本身對主軸和工件的直線度要求也較為高。如果是采用珩磨專用機,由于專用機特殊的起浮主軸和追隨馬達的裝配,所以一般情況下運用高品質的萬向節即可實現率單沖程珩磨。
加工中心的功能提升
雖然國產機床的制造商們在不斷努力進步產品質量和精度以滿意各種精度的需求,但機床的主軸和待珩磨的孔之間的直線性仍是很難到達,由于這涉及到廠商幾十年的研發水準,以及機床中任何一個零件的上下游供應鏈水準問題。我們不行能要求一臺國產十幾萬的機床或加工中心,到達它們三倍售價的進口機床相同水準;所以要使內孔到達很高的圓心度、圓柱度仍然是個非常扎手的問題。
另外,導致主軸與工件直線性差的另一個重要的也是難處理的原因是機床軸承的發熱導致主軸的同心度誤差,這幾乎是個不行消除的要素。要獲得孔和機床主軸的的同心度,就要使珩磨棒很的伸進孔中而且保證不受任何徑向力,起浮夾具正是為此類情況規劃的,一起起浮夾具還補償工件裝置、珩磨棒等在水平軸向或在筆直空間內的差錯。所以無論是國產機床仍是進口高精密數控機床,起浮夾具對孔的直線度和圓柱度的進步都是決定性的。
起浮夾具的特點
? 徑向振幅按捺在5μm以下;
? 出資少卻能進行比曾經更的加工;
? 東西替換時刻減少,進步出產效率;
? 消除因切削抵抗發生的誤差;
? 按捺品質不穩定,減少不良品和修正工件;
? 糾正前工序的孔加工誤差。起浮夾具的使用
起浮夾具使用加工機械:鉆床、立式加工中心、珩磨機等。
使用東西:金剛石珩磨棒、鉸刀、絲錐、滾光刀等。
使用領域包括:轎車發動機、船只發動機以及液壓、衣療、動力、航空等各個領域的機械零部件制造中。
加工(High Performance Machining,HPM)是在確保零件精度和質量的前提下,通過對加工進程的優化和進步單位時間資料切除量來進步加工效率和設備使用率、下降生產成本的一種高功用加工技能。在某些程度上,可以以為加工涵蓋了高速加工。
在加工體系中,刀具是完結切削加工的東西,直觸摸摸工件并從工件上切去一部分資料,使工件得到契合技能要求的形狀、尺度精度和外表質量。在整個加工進程中,刀具直接與工件觸摸,會呈現嚴重的刀具磨損現象,因而刀具也是加工進程中的一大消耗品。刀具技能的內在包含刀具資料技能、刀具結構規劃和成形技能、刀具外表涂層技能等,也包含了上述單項技能歸納交叉構成的高速刀具技能、刀具可靠性技能、綠色刀具技能、智能刀具技能等。刀具作為機械制作工藝配備中重要的一類根底部件,其技能開展又構成智能制作、精細與微納制作、仿生制作等根底機械制作技能,以及液密氣密、齒輪、軸承、模具等根底部件技能的支撐技能。
刀具在切削進程中承受深重的負荷,包含高的機械應力、熱應力、沖擊和振蕩等,如此惡劣的工作條件對刀具功用提出了高要求。在現代切削加工中,率的尋求以及大量難加工資料的呈現,對刀具功用提出了進一步的應戰。因而,挑選刀具資料、規劃刀具結構、開展刀具涂層和高功用刀具技能成為進步切削加工水平的要害環節。
加工刀具
刀具資料
刀具資料對刀具壽數、加工效率和加工質量等有著重要影響。目前,刀具資料首要有高速鋼、硬質合金、陶瓷和超硬資料等。
高速鋼(HSS)是一種具有高硬度、高耐磨性和高耐熱性的東西鋼,其熱處理工藝較為雜亂,有必要通過淬火、回火等一系列進程。高速鋼合金元素含量較多,總量可達10%~25%。
按所含合金元素不同可分為:鎢系高速鋼、鎢鉬系高速鋼、高鉬系高速鋼、釩高速鋼和鈷高速鋼。含鈷高速鋼一般是在通用高速鋼的根底上參加5%~8% 鈷,可顯著進步鋼的硬度、耐熱性和耐性。粉末冶金高速鋼安排均勻,晶粒細微,消除了熔鑄高速鋼難以避免的偏析,因而比相同成分的熔鑄高速鋼具有更高的耐性和耐磨性,一起還具有熱處理變形小、鍛軋功用和磨削功用良好等優點。高速鋼資料首要用于制備各種成形拉刀(整體式、組合式)、高速滾刀、剃(插)齒刀、輪槽刀等,大量應用在轎車、航空發動機、發電設備等制作職業,加工高強度、高硬度鑄鐵(鋼)合金。
陶瓷資料首要是離子鍵和共價鍵結合,其結合力是比較強的正負離子間的靜電引力或共用電子對,所以熔點高、硬度高,具有優異的絕緣性和化學安穩性。
按化學成分,淘瓷刀具資料可分為氧化物基陶瓷、碳化物基陶瓷、碳氮化物基陶瓷和硼化物基陶瓷。因為具有高的硬度、強度與耐磨性,淘瓷刀具可用來加工淬火鋼、高強度鋼、不銹鋼以及各種合金鋼和碳鋼,還可以加工各種高硬度的合金鑄鐵??墒翘源傻毒呔哂幸粋€共性,就是易崩刃,故而應用規模比較局限。
聚晶金剛石(PCD)、聚晶立方氮化硼(PCBN)、立方氮化硼(CBN)、單晶金剛石等超硬資料具有極高的硬度和耐磨性、低摩擦系數、高彈性模量、高熱導、低熱膨脹系數,以及與非鐵金屬親和力小等優點,已敏捷應用于高硬度、高強度、難加工有色金屬(合金)及有色金屬- 非金屬復合資料零部件的高速、、干(濕)式機械切削加工職業中。
天然金剛石作為超精細加工刀具不行代替的資料,應用于各種精細儀器透鏡、反射鏡、計算機磁盤等工件的精細(超精、納米級)車削加工。
PCD 刀具與天然金剛石刀具功用挨近,具有優異的耐磨性,可用來加工有色金屬和非金屬資料,還可用來精加工難加工資料,如硬質合金和歸呂合金。
立方氮化硼(CBN)是硬度僅次于金剛石的超硬資料。它不但具有金剛石的許多尤秀特性,而且有更高的熱安穩性和對鐵族金屬及其合金的化學惰性,可用于加工金剛石刀具不能加工的黑色金屬及其合金資料。
刀具結構規劃
刀具結構包含刀具自身及各功用部件外部形狀、裝夾辦法、切削刃區幾許角度和截形。
刀具許規劃首要針對刀刃強度,刀具的容屑、斷屑,刀具可靠性、安全性等基本刀具幾許功用,也是刀具規劃的首要打破方向。
未來開展中,在結構上呈現了針對難加工資料的變螺旋角規劃、變齒距規劃以及可下降切削振蕩的消振棱規劃技能,而刃口鈍化處理技能和負倒棱規劃技能可顯著進步刀刃強度,且隨著微納制作研討領域的打破逐步構成產業化技能。
刀具物理規劃方面目前以刀具資料功用的改進為主,并逐步開端朝著針對特定加工條件、工件資料進行定制化規劃刀具物理功用的方向開展。
現代刀具技能的開展,應一起滿足刀具功用和綠色、低耗的要求,刀具幾許規劃和物理規劃都趨于精細化、專用化、智能化、柔性化。在確保刀具功用的前提下,有利于完成刀具收回再使用的規劃與成形技能將受到重視。
刀具涂層
刀具外表涂層以增效和延壽為意圖,是將耐高溫、耐磨損的資料涂覆在刀具基體資料外表。涂層作為一個化學屏障和熱屏障,減少了刀具與工件間的擴散和化學反應,然后減少了刀具的月牙槽磨損。涂層刀具具有外表硬度高、耐磨性好、化學功用安穩、耐熱耐氧化、摩擦因數小和熱導率低等特性。
目前,常用的刀具涂層辦法有化學氣相堆積法(CVD)、物理氣相堆積法(PVD)、等離子體化學氣相堆積法(PCVD)、熱噴涂法和離子束輔佐堆積法(IBAD),其間以PVD 和CVD 應用為廣泛。
刀具的涂層技能目前現已成為進步刀具功用的要害技能。在涂層工藝方面,CVD 仍然是可轉位刀片的首要涂層工藝,開發了中溫CVD、厚膜Al2O3 等新工藝,在基體資料改進的根底上,使CVD 涂層刀具的耐磨性和耐性都得到進步。CVD涂層技能的未來開展方向是高功用CVD 刀具涂層工藝技能及配備制作技能,包含制備厚膜α-Al2O3 的要害工藝技能、微粒潤滑的Al2O3 膜的制備技能;防腐真空獲得體系及氣體輸入體系的研討開發;潔凈反應源的研討及廢棄(氣)物后處理技能。PVD 同樣取得了重大進展,開發了適應高速切削、干切削、硬切削的耐熱性更好的涂層,如納米、多層結構等,從早的TiN 涂層到TiCN、TiAlN、A l2O3、C r N、Z r N、C r A l N、T i S i N、TiAlSiN、AlCrSiN 等硬涂層及超硬涂層資料。PVD 涂層技能的未來開展方向是類金剛石涂層、CBN 涂層、大面積等離子涂層技能。等離子體化學氣相堆積法(PCVD)是將高頻微波導入含碳化物氣體發生高頻高能等離子,或許通過電極放電發生高能電子使氣體電離成為等離子體,由氣體中的活性碳原子或含碳基團在合金的外表堆積的一種涂層制備辦法。等離子體對化學反應有促進作用,使等離子體化學氣相堆積法可以把堆積溫度降至600℃以下。在該溫度下,刀具基體與涂層資料之間不會發生擴散、交換反應或相變,刀具基體可以堅持原有的強耐性。
刀具涂層技能向物理涂層附加大功率等離子體方向開展;功用薄膜向著多元、多層膜的方向開展;并研討集硬度、化學安穩性、抗癢化性于一體且具有低內應力和高附著力的薄膜制備技能。圖5(a)為多層涂層,其內層的TiCN 與基體有較強的結合力和強度,中心的Al2O3 作為一種有用的熱屏障可答應有更高的切削速度,外層的TiCN 確保抗前刀面和后刀面磨損能力,外一薄層金黃色的TiN 使得簡單區分刀片的磨損狀態;圖5(b)中納米涂層與傳統涂層相比,具有超硬度、超模量和高紅硬性效應,而且顯微硬度可超過40GPa ;圖5(c)納米復合結構涂層(nc-Ti1-xAlxN)/(α-Si3N4)在強等離子體作用下,納米TiAlN 晶體被鑲嵌在非晶態的Si3N4 體內,當TiAlN晶體尺度小于10nm 時,位錯增殖源難于啟動,而非晶態相又可阻止晶體位錯的搬遷,即便在較高的應力下,位錯也不能穿越非晶態晶界。這種結構薄膜的硬度可以到達50GPa 以上,并可堅持相當優異的耐性,且當溫度到達900~1100℃時,其顯微硬度仍可堅持在30GPa 以上。
C