您好,歡迎來到易龍商務網!
發布時間:2021-06-10 05:02  
【廣告】







為研究后9-19風機葉輪的流場及噪聲問題,采用三維建模軟件UG對現有葉輪進行逆向建模,提取出葉輪的幾何模型,運用Hypermesh對葉輪模型進行網格劃分,然后采用Fluent軟件模擬了葉輪三維粘性定常流動特性,分析了葉輪內部流動情況,在此基礎上對葉輪模型進行噪聲分析,得到流場模擬和噪聲分析結果,為葉輪優化設計提供理論依據。9-19風機管道共振和檢查處理措施風機的進出口管段風速很高,高速穿行的風會擾動管道,使管道發生共振。
9-19風機作為干燥、通風類家電產品的重要組成部件,其性能直接影響著家電產品質量的高低。隨著現代生活對節能、環保等要求日益提高,開發、低噪風機成為必然趨勢。離心式通風機的工作介質為氣體,工作過程中會產生氣動噪聲、機械噪聲和氣固耦合噪聲,其中氣動噪聲是主要噪聲,約占到總噪聲的45%左右。風機氣動噪聲主要由離散噪聲(旋轉噪聲)和湍流噪聲組成。高速高壓離心風機旋轉噪聲較高,低速低壓風機以湍流噪聲為主。且基頻噪聲和寬頻噪聲在風機中不同程度的存在。目前對離心式通風機降噪研究還處于試驗為主的研究階段,但試驗研究成本較大、周期較長,這對9-19風機產品開發非常不利。此外,影響離心式通風機氣動噪聲的因素眾多,設計所得結果的降噪機理難以被系統揭示。數值模擬方法能夠提供風機的內部流場信息和噪聲分布情況,有利于準確認識離心式通風機噪聲產生機理和降噪原理,為進一步推廣降噪設計的方法提供依據。1Pa,相比可以看出,9-19風機加米字形集流器導流效果比普通圓弧形集流器好。所以,對離心式通風機數值模擬的研究是非常必要的。
9-19風機葉片吸力側形成的低能流積聚的“尾跡區”,形成“射流-尾流”結構。加進氣箱后,風機葉輪尾緣處的“尾跡-射流”更加的嚴重,風機模型尾跡區占了比較大的空間,減少了風機流道有效面積。在小流量區,風機內部的流場分布發生偏心現象(C 處),葉輪流道E 側,氣體比較充實,葉輪流道F 側氣體分布較差,與原始風機內部流場分布相比,其9-19風機葉輪流道的充盈性差。離心風機的效率曲線如圖6,無進氣箱情況下在流量為2.82kg/s,壓力為3 106.23Pa 時,達到較率68.64%;加進氣箱后在流量為1.68kg/s,壓力為2 775.54Pa,達到較率59.45%,通過與原始風機對比可知,加進氣箱后其較率降低8.19%。同樣由圖6 效率曲線對比圖可知,加進氣箱后風機整體效率降低,與原始9-19風機相比其區域比較窄,縮短了工作區域,且加進氣箱后較優工況點向小流量區偏移。加進氣箱后,離心風機的全開流量降低,與無進氣箱相比,流量降低了16.9%。由圖7 可知,加進氣箱不僅降低了風機的全開流量,其全壓也有所減少。風機性能測試采用C 型試驗裝置對帶進氣箱的離心風機進行了性能測試,測試標準按GB/T 1236-2017《工業通風機用標準化風道進行性能實驗》執行。加米字形集流器和普通圓弧形集流器內部流場受壓分布所示,9-19風機米字形集流器入口壓力為-8000Pa,到集流器出口達到-18000Pa,壓差10000Pa。
9-19風機在大流量區計算值比實測值偏高,小流量區計算值比實測值偏低,但是整體上計算結果與實測結果基本吻合。由效率曲線圖可知,大流量區計算結果比實測結果偏高,小流量區計算結果比實測結果偏低,說明計算結果與實測結果吻合。通過實驗值與計算值的對比,CFX 軟件的數值模擬結果與實測結果一致,由此驗證了采用CFX 軟件對帶進氣箱的離心風機的數值模擬是可靠的。B組合改進風機全壓降低了約5.0Pa,9-19風機效率下降了約0.9%。
試驗噪聲分析
離心風機的噪聲按照流體動力聲源的發聲機制,分為三類:1)單極子,2)偶極子,3)四極子,風機正常工作狀態下產生的噪聲主要來源于偶極子源。根據GB/T2888-2008《風機和羅茨鼓風機噪聲測量方法標準》對有無進氣箱離心風機的噪聲進行測試。試驗地點:浙江上風高科專風實業有限公司CNAS 檢測中心;蝸殼優化對9-19風機金屬葉輪穩定運行的影響蝸殼是離心風機金屬葉輪的重要組成部分。采用聲級計對風機出口處的噪聲進行測試,測試方式及儀器。測量時,除地面外無其他的反射條件,測點位置D 距地面的高度與風機出口中心持平,水平方向上與出氣口軸線成45° ,距離出氣口中心L=1m。
9-19風機的噪聲在小流量區,帶進氣箱的離心風機噪聲低于不帶進氣箱,隨著流量的增加,帶進氣箱的風機噪聲顯著提高,在大流量區,明顯的高于不帶進氣箱的噪聲。
為改善9-19風機受氣體粘性影響導致流動分離加劇的現象,在傳統蝸殼型線設計理論的基礎上,研究氣體粘性力矩對蝸殼壁線分布的影響,并采用動量矩修正方法對其進行改型設計。另外,為真實反映風機內流場分布情況,在標準k-ε 計算模型的擴散項中加入粘性應力作用,使其高計算誤差降低至3%。對比分析改型前后風機數值模擬計算和試驗測量結果可知,采用修改的k-ε 模型進行計算發現改型后風機內旋渦強度減小,蝸殼出口靠近蝸舌處流動分離得到改善。試驗結果表明:改型9-19風機出口靜壓提升約25Pa,較大全壓效率較原型機提升約10%。對風機進出口安裝條件有限制并且對噪聲有一定要求的離心風機,吸聲蝸殼是較好的選擇。
同時,由于蝸殼張開度擴大能夠抑制流動分離,使蝸舌附近區域的旋渦強度及其影響區域減小,從而有效地降低了多翼離心風機噪聲2.5dB。多翼離心風機廣泛應用于國民經濟的各個領域,是工業生產中主要耗能設備之一,蝸殼作為離心風機中不可或缺的基本元件,其結構的不對稱性及內部流動的復雜性會對葉輪出口氣流角造成較大影響,使其沿圓周方向呈現出明顯的不對稱性。而在風機實際運行過程中,9-19風機葉輪出口氣流與蝸殼壁面間存在強烈的非定常干涉,使得蝸殼壁面成為風機的主要噪聲源。因此提高蝸殼型線設計水平,不僅能改善風機氣動性能,還能達到降低噪聲的效果。目前國內外學者對離心風機蝸殼型線的研究,主要集中在尋找能真實反映蝸殼內流體流動狀態的設計方法。在小流量工況下,風機流動惡化,風機振動較大,導致振動噪聲很大以致降噪效果反而變差。