您好,歡迎來到易龍商務網!
發布時間:2021-09-04 18:30  
【廣告】





人工智能控制器
總而言之,當采用自適應模糊神經控制器,規則庫和隸屬函數在模糊化和反模糊化過程中能夠自動地實時確定。有很多方法來實現這個過程,但主要的目標是使用系統技術實現穩定的解,并且找到的拓樸結構配置,自學習迅速,收斂快速。模糊邏輯控制應用 主要有兩類模糊控制器,Mamdani和Sugeno型。到目前為止只有Mamdani模糊控制器用于調速控制系統中。
在各種出版物中,介紹了許多被模糊化的控制器,但這應與“充分模糊”控制器完全區分開來,“充分模糊”控制器才是完全意義上的模糊控制器,被模糊化的控制器易于實現,往往通過改造現有古典控制器得以實現,如被模糊化的PI控制器(FPIC)使用模糊邏輯改變控制器的比例、積分參數,從而使系統的性能得到提高
運用常規反向傳播學習算法。該系統由兩個子系統構成,一個系統通過電氣動態參數的辯識自適應控制定子電流,另一個系統通過對機電系統參數的辯識自適應控制轉子速度。后值得指出的是現在發表的大多數有關ANN對各種電機參數估計的,一個共同的特點是,它們都是用多層前饋ANNS,用常規反向傳播算法,只是學習算法的模型不同或被估計的參數不同。
總而言之,當采用自適應模糊神經控制器,規則庫和隸屬函數在模糊化和反模糊化過程中能夠自動地實時確定。,隨著現代控制理論的發展,控制器設計的常規技術正逐漸被廣泛使用的人工智能軟件技術所替代。不同的人工智能控制通常用完全不同的方法去討論。但AI控制器例如:神經、模糊、模糊神經,以及遺傳算法都可看成一類非線性函數近似器。