您好,歡迎來到易龍商務網!
發布時間:2021-09-03 22:31  
【廣告】







轉向齒條感應淬火技術
感應加熱電流頻率的選擇電流頻率的選擇與齒條齒面和齒背的硬化層深、齒傾角及零件直徑等因素有關。
要保持感應淬火技術在轉向齒條生產線上的應用,必須設計研制擠壓夾持裝置,確保該技術在大批量生產過程中發揮功效。試驗中運用了多種擠壓裝置(淬火機床)較好地解決了大批量生產中齒條的裝夾定位問題。
在轉向齒條接觸式感應淬火過程中,采用保證齒溝都得到充分冷卻的噴水并在齒條加熱本體的另一側輔助噴淋冷的冷卻方式,在生產過程中對加強齒條的硬化及減小畸變產生了良好的效果。
限制淬火畸變方法:
①淬火時在齒條背部采用3點支撐,其中一點為預應力支撐,其相對于另外2個支撐塊的高度,要控制在一定范圍內,同時3個支撐塊的布置必須同軸;②系統對齒條壓緊,選擇合理的系統壓力;③齒條淬火時,合理選擇壓緊部位。
車軸感應淬火技術的發展
車軸是機車車輛中的部件之一,它直接關系到鐵道車輛行車安全。簡單的說就是銷軸淬火設備熱處理效果好,詳細的就要從多方面來比較了。從19世紀中到20世紀初,各國對車軸的疲勞斷裂進行了大量的研究,如科學家Wholer和Hoger用全尺寸車軸進行車軸疲勞斷裂的研究,日本也對實物車軸進行了大量的試驗研究。對車軸疲勞強度和疲勞斷裂機理已研究很清楚,但鐵路車輛車軸疲勞斷裂依然存在。例如,在俄羅斯僅1993年在運用的220~250萬根車軸中,因疲勞裂紋而報廢的就達6800根。法國在高速鐵路系統的定期檢修中,將輪座磨去0.5mm深,以防止再次裂紋萌生。在日本新干線使用的所有車軸,運行 45萬公里后,用磁粉探傷儀進行檢查,每年進行磁粉探傷的車軸總數約2萬根。隨著高速鐵路在世界各國的興起和不斷發展,對車軸的安全使用性能提出了更高的要求。強化車軸表面,是提高車軸斷裂的重要措施。無論是法國、日本還是德國對高速運行下的車軸都進行了大量的研究和應用,日本、法國均采用低碳鋼制造車軸,并進行表面感應淬火處理。日本新干線的使用結果表明,這種車軸經表面感應淬火后,克服了車軸的斷裂,確保了行車安全。車軸材料我國的機車、車輛均采用碳素鋼車軸,縱觀總體情況,應該說碳素鋼車軸是成熟的、可靠的。對于高速列車車軸材料是選碳素鋼還是合金鋼,我國還沒有成熟的技術。由于各國的國情不同 ,技術觀點不同 ,選用的車軸材料不盡相同,但都屬于低碳鋼范疇。
感應淬火低碳鋼車軸表面采用感應淬火是提高其疲勞壽命為經濟而有效的方法。大型軸承圈滾道中頻感應淬火鋼平面滾道軸承是火箭、、發射裝置中用于回轉支承的重要部件。日本對此進行了詳細的試驗研究 ,并成功地運用在高速鐵路上。日本新干線在這方面工作早在 1948年就開始了 ,碳素鋼經調質處理后 ,再沿車軸縱向進行表面感應加熱淬火 ,在淬硬層內獲得非常細的馬氏體組織 ,使其表面硬度顯著增加。
錐齒輪高頻感應加熱淬火工藝
錐齒輪用于拖拉機產品中,其齒部要求高頻表面淬火,圓柱形感應器進行工藝試驗,發現工件淬火硬度不均, 不能滿足產品技術要求。
與齒部形狀相一致的錐形感應器,通過工藝試驗,滿足了產品技術要求。
產品的材質為45鋼,熱處理調質硬度25-30HRC,齒部要求表面淬火,淬火硬度40-50HRC。
齒部高頻淬火采用感應淬火設備。采用同時加熱噴水冷卻。高頻感應淬火所用 感應器為錐形感應器,感應器與齒部大端面之間間隙為2mm。
通過生產實踐,采用錐形感應器對錐齒輪齒部進行高頻淬火,回火后測得齒部表面淬火硬度均在40-50HRC之間,產品質量穩定,滿足生產需求及產品技術要求。
提升齒輪硬度的方式:感應加熱及淬火
齒輪旋轉淬火(使用環形感應器)
旋轉淬火是的感應齒輪硬化方法,并且它特別適用于中等大小的齒輪。軸承高頻淬火設備低淬鋼感應淬火的特點有:低淬鋼感應淬火工藝適用于復雜工件,如齒輪、軸承環與傳動十字軸等,低淬鋼的晶粒度為11~12級,而一般鋼的晶粒度為7~8級,晶粒細化使抗脆性斷裂性能提高5~10倍。在加熱期間旋轉齒輪以確保能量的均勻分布。可以使用環繞整個齒輪的感應器。當應用感應器時,有五個參數對硬度起主要作用:頻率,功率,循環時間,感應器幾何形狀和淬火條件。通過加熱時間,頻率和功率的變化獲得的感應淬火圖案。通常,當僅需要硬化齒尖時,應結合較短的加熱時間來施加較高的頻率和較高的功率密度。為了硬化齒根,使用較低的頻率。
感應淬火是一個兩步過程:加熱和淬火。兩個階段都很重要。在旋轉淬火應用中有三種方法來淬火齒輪
1.將齒輪浸入淬火槽中。這種技術特別適用于大齒輪;
2.使用集成噴霧淬火“就地”淬火。中小型齒輪通常使用這種技術淬火;
3.使用位于感應器下方的單獨的同心噴霧滅火塊(淬火)。在受摩擦的場合,表面層還不斷地被磨損,因此對一些零件表面層提出高強度、高硬度、高耐磨性和高疲勞極限等要求,只有表面強化才能滿足上述要求。淬火-蒸氣層,沸騰和對流熱傳遞的三個階段的經典冷卻曲線不能直接應用于噴射淬火。由于噴射淬火的性質,兩個階段被大大抑制。同時,在對流階段期間的冷卻更嚴重。齒輪幾何形狀和轉速是在齒輪淬火期間對淬火流動和冷卻嚴重性具有顯著影響的其它因素。同樣重要的是避免感應器和淬火系統相對于齒輪和齒輪擺動的偏心。即使齒輪旋轉,齒輪擺動將導致齒輪的特定部分在加熱期間更熱,因為不管旋轉,它將總是更靠近線圈。除了不均勻加熱以外,擺動還引起不均勻淬火,導致額外的硬度不均勻性和齒輪形狀變形。已經報道,使用齒輪旋轉硬化技術而不是“逐齒”或“間隙”方法在齒根內獲得更有利的壓縮應力。